半监督分层递归图神经网络用于城市范围内的停车位可用性预测 这是SHARE体系结构的Pytorch实现,如论文《。 如果您在研究中利用SHARE模型,请引用以下内容: @article{zhang2019semi, title={Semi-Supervised Hierarchical Recurrent Graph Neural Network for City-Wide Parking Availability Prediction}, author={Zhang, Weijia and Liu, Hao and Liu, Yanchi and Zhou, Jingbo and Xiong, Hui}, booktitle={Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligen
1
matlab svr代码神经发育结果的预测 包括以下项目: Matlab 中的自定义代码,用于支持向量回归 (SVR) 分析,采用留一法来预测神经发育结果。 Script_SVR_LOOCV_analysis.m; 演示输入数据: subject_feature.mat: N 个科目 x M 个感兴趣的区域 subject_score.mat:N 个科目 x 1 Script_SVR_LOOCV_analysis.m 的预期输出: Predicted_score:预测的神经发育结果; RHO 和 MAE:分别是预测分数和实际分数之间的相关系数和平均绝对误差; feature_contribution:每个特征对神经发育结果预测的贡献。 安装指南和系统要求 脚本已在 Matlab 2015a 上通过 LIBSVM(版本 3.20 和 3.22)在 Windows 操作系统上进行了测试。 硬件要求:Matlab 脚本只需要一台具有足够 RAM 的标准计算机(推荐 8+ GB)。 软件要求:SVR 使用 LIBSVM 包实现,可从 .
2022-12-05 16:51:53 20KB 系统开源
1
二手车价格预测 探索具有随机森林和正则化的二手车价格预测模型。 我使用R进行数据可视化,数据插补和模型选择。 涉及的主要软件包是Hmisc,ggplot2,randomForest和glmnet。 我们正在寻求使用随机Forst和正则化技术的特征选择和预测算法。 方法是随机森林,山脊,套索和弹性网回归。 事实证明,弹性模型可以大幅度减少维数,并保持良好的预测能力。
2022-11-28 14:55:20 7KB
1
与医学有关的matlab代码clardia---Type-2-Diabetes-Predict-Using-Short-PPG-Signals-and-Physiological-Characteristics- 奇拉特·赫蒂亚拉奇 介绍 该存储库包含与项目相关的代码:使用机器学习从光电容积脉搏波 (PPG) 测量和生理特征预测糖尿病。 原始数据集:Liang, Yongbo, etal.“中国血压监测的新的短记录光体积描记图数据集”。 科学数据 5 (2018):180020。 已使用 Matlab 软件提取了文献中与 PPG 信号相关的主要特征。 要运行 matlab 脚本,请下载原始数据集并运行脚本以提取与糖尿病、正常和高血压患者相关的特征。 提取的特征用作模型的输入。 AIME 2019 与论文相关的代码:Hettiarachchi、Chirath 和 Charith Chitraranjan。 “使用短记录光体积描记术和生理特征预测糖尿病的机器学习方法。” 欧洲医学人工智能会议。 斯普林格,湛,2019 年。 关联: 光纤光栅预测 与使用 PPG 信号进行空腹血糖预测相关的代
2022-11-24 10:06:16 15.52MB 系统开源
1
乳腺癌预测 在乳腺癌数据集上采用了四种机器学习模型来确定最佳模型。 逻辑回归 决策树分类器 随机森林分类器 支持向量机
2022-11-23 12:17:39 132KB JupyterNotebook
1
车价预测 车价回归 问题陈述 一家中国汽车公司吉利汽车(Geely Auto)希望通过在美国设立生产部门并在当地生产汽车,从而在美国和欧洲同行中竞争来进入美国市场。 他们与汽车咨询公司签约,以了解汽车定价所依赖的因素。具体来说,他们想了解影响美国市场汽车定价的因素,因为这些因素可能与中国市场有很大不同。该公司想知道: 哪些变量在预测汽车价格方面很重要 这些变量如何很好地描述汽车的价格 根据各种市场调查,这家咨询公司收集了整个美洲市场上各种类型汽车的大型数据集。
2022-11-18 23:06:14 958KB JupyterNotebook
1
FIFA-worldcup-2018-预测 使用机器学习预测2018年FIFA世界杯冠军。 这是我的第一个练习数据挖掘和机器学习技术的个人项目。 我主要使用熊猫,seaborn和scikit-learn。 请随意查看回购中的Jupyter Notebook,以检查代码和提供的见解。 我希望它足够讲道理! 如何可视化Jupyter Notebook的所有荣耀 确保已安装Jupyter笔记本( )。 在此存储库中,按绿色的“克隆”或“下载”按钮。 确定是要克隆存储库还是将其下载为.zip(如果您不熟悉Github,建议您以.zip下载)。 打开Jupyter Notebooks应用程序。 浏览器中的选项卡将打开。 导航到保存该存储库的文件夹。 单击“ Predicting World Cup 2018 Winner.ipynb文件将其打开。 它应该工作! 现在,您可以浏览代码,运
2022-11-13 23:11:17 1.17MB JupyterNotebook
1
关于Blockchain Unfair Transaction Order Prediction项目的中期答辩ppt
2022-11-05 09:08:08 2.96MB 比特币 区块链
1
cnn-bilstm-attention-time-series-prediction_keras-master
2022-10-30 18:02:39 498KB cnn keras 文档资料 python
1
从国家数据预测每年的 CO2 排放量 机器学习项目 弗拉迪斯拉夫·托多罗夫 自述文件 内容: 项目介绍 背景和目标 项目结构 内置 所有项目阶段的总结 如何打开 数据集信息 许可证信息 一、项目说明 背景和目标 预测机器学习 (ML) 模型和大量可用数据对于分析气候变化趋势或相关贡献者的发展非常有用。 理论上,国家一年内二氧化碳等温室气体排放量可能取决于特定国家的某些方面。 在此背景下,我开发了一个 ML 项目,旨在分析和预测来自国家特定参数(如经济指标、人口、能源使用、土地使用等)的二氧化碳排放量。 为此,我使用了世界银行集团提供的公开数据集,其中包括以下参数: 国家:全球绝大多数国家 年份:从 1990 年到 2011 年 温室气体排放,如 CO2、CH4、N2O 等 特定于人口的参数:人口计数,城市人口,人口增长等 国家经济指标:GDP、GNI、外商直接投资等。 与土地相关的
1