SimCLR-视觉表示形式对比学习的简单框架 消息! 我们发布了SimCLR的TF2实现(以及TF2中的转换后的检查点),它们位于。 消息! 新增了用于Colabs,请参见。 SimCLR的插图(来自 )。 SimCLRv2的预训练模型 我们在这里开源了总共65个经过预训练的模型,与论文的表1中的模型相对应: 深度 宽度 SK 参数(M) 金融时报(1%) FT(10%) FT(100%) 线性评估 监督下 50 1倍 错误的 24 57.9 68.4 76.3 71.7 76.6 50 1倍 真的 35 64.5 72.1 78.7 74.6 78.5 50 2倍 错误的 94 66.3 73.9 79.1 75.6 77.8 50 2倍 真的 140 70.6 77.0 81.3 77.7 79.3 101 1
1
锁定/解锁Ubuntu OS 介绍 我们可以使用面部识别来锁定和解锁我们的Ubuntu系统(目前仅在Ubuntu上)。 关于实施的文章 演示版 要求 安装在本地计算机中所需的库下面。 python 3.7 的opencv 4.1.0 麻木 人脸识别 sudo apt-get安装gnome-screensaver sudo apt-get安装xdotool 快速开始 我使用了三个python文件来解决此问题。 face_generate.py这将检测到您的脸并将其保存在数据集文件夹中,然后将使用您的名字创建新文件夹。 face_train.py这个python文件将打开数据集文件夹并
2023-02-27 21:43:38 14.91MB opencv computer-vision ubuntu numpy
1
Gluon CV工具包 | | | | GluonCV提供了计算机视觉中最先进的(SOTA)深度学习模型的实现。 它是为工程师,研究人员和学生设计的,用于基于这些模型快速制作原型产品和研究思路。 该工具包提供四个主要功能: 训练脚本以重现研究论文中报告的SOTA结果 同时支持PyTorch和MXNet 大量的预训练模型 精心设计的API,可大大降低实施复杂性 社区支持 演示版 在或检查高清视频。 支持的应用 应用 插图 可用型号 识别图像中的物体。 50多个模型,包括 , , , ,... 用它们的检测多个对象图像中的边界框。 , , 关联图像的每个像素带有分类标签。 , , , , , , 检测物体并关联对象区域内的每个像素都有一个实例标签。 检测人体姿势从图像。 认识人类的行为在视频中。 MXNet: , , , , , , ,, PyTorch: , , , ,, , , 预测深度图从图像。 生成视觉欺骗性图像 , , 重新识别场景中的行人 安装 GluonCV构建在MXNe
1
背景分离matlab代码计算机视觉与模式识别 内容 1.关于此存储库 该存储库是基本计算机视觉和图像处理技术的集合。 算法的实现在MATLAB中。 2.直方图均衡 图像处理技术。 查看更多详细信息。 代码 3.对比度拉伸 图像处理技术。 查看更多详细信息。 代码 4.边缘检测 图像处理技术。 查看更多详细信息。 代码 5.去除背景 图像处理技术。 查看更多详细信息。 代码 6.背景前景分离 前景检测和背景减法是计算机视觉和图像处理中的主要任务。 查看更多详细信息。 代码
2023-02-20 15:26:44 10.48MB 系统开源
1
Welcome to the Practitioner Bundle of Deep Learning for Computer Vision with Python! This volume is meant to be the next logical step in your deep learning for computer vision education after completing the Starter Bundle. At this point, you should have a strong understanding of the fundamentals of parameterized learning, neural net works, and Convolutional Neural Networks (CNNs). You should also feel relatively comfortable using the Keras library and the Python programming language to train your own custom deep learning networks. The purpose of the Practitioner Bundle is to build on your knowledge gained from the Starter Bundle and introduce more advanced algorithms, concepts, and tricks of the trade — these tech- niques will be covered in three distinct parts of the book. The first part will focus on methods that are used to boost your classification accuracy in one way or another. One way to increase your classification accuracy is to apply transfer learning methods such as fine-tuning or treating your network as a feature extractor. We’ll also explore ensemble methods (i.e., training multiple networks and combining the results) and how these methods can give you a nice classification boost with little extra effort. Regularization methods such as data augmentation are used to generate additional training data – in nearly all situations, data augmentation improves your model’s ability to generalize. More advanced optimization algorithms such as Adam [1], RMSprop [2], and others can also be used on some datasets to help you obtain lower loss. After we review these techniques, we’ll look at the optimal pathway to apply these methods to ensure you obtain the maximum amount of benefit with the least amount of effort.
2023-02-14 22:12:08 60.62MB deep learning
1
计算机视觉 算法与应用,这是一本经典的计算机视觉的教程,由Richard Szeliski撰写,本书清晰无无污染,适合打印(ps 这本书是英文版的)
2023-02-09 15:53:58 22.09MB 计算机视觉 经典教材
1
Multiple View Geometry in Computer Vision( 计算机视觉中的多视图几何 )中英文文档各一份 hartley 大神之作
2023-01-11 11:19:17 52.49MB 计算机视觉; 多视几何
1
CompreFace-Exadel的开源人脸识别系统 CompreFace是一项免费的人脸识别服务,可以轻松集成到没有事先机器学习技能的任何系统。 ··· 面对面 总览 CompreFace是用于人脸识别的基于docker的应用程序,可以集成为独立服务器或部署在云中,并且无需机器学习专家即可进行设置和使用。 我们的方法基于深度神经网络,它是最流行的面部识别方法之一,并提供了便捷的REST API,用于Face Collection训练和面部识别。 我们还提供了一个角色系统,您可以使用它轻松控制谁可以访问Face Collection。 每个用户都可以创建自己的模型,并在输入数据的不同子集上对
2023-01-03 19:48:09 124.28MB docker computer-vision docker-compose rest-api
1
图片字幕 介绍 建立一个模型以从图像生成字幕。 给定图像后,模型可以用英语描述图像中的内容。 为了实现这一点,我们的模型由一个编码器(一个CNN)和一个解码器(一个RNN)组成。 为CNN编码器提供了用于分类任务的图像,其输出被馈送到RNN解码器,后者输出英语句子。 该模型及其超参数的调整基于论文和。 我们使用微软Çommon在CO NTEXT(MS COCO)O bjects为这个项目。 它是用于场景理解的大规模数据集。 该数据集通常用于训练和基准化对象检测,分段和字幕算法。 有关下载数据的说明,请参见下面的“数据”部分。 代码 该代码可以分为两类: 笔记本-该项目的主要代码由一系列Jupyter笔记本构成: 0_Dataset.ipynb介绍数据集并绘制一些样本图像。 1_Preliminaries.ipynb加载和预处理数据并使用模型进行实验。 2_Training.ip
2023-01-02 13:00:14 2.09MB nlp computer-vision cnn pytorch
1
全景OpenCV 从stitch_final.py的文档中 用法:pythonitch_final.py -dest <目标文件名.jpg> 用法: (例子) : 请将存储库克隆到工作文件夹。 执行以下命令 pythonitch_final.py images / destination.jpg 它将询问是否要修剪或旋转,请按照给定的指示进行操作。 图像将显示并保存到给定的目的地。 [理论等稍后添加]-维护中的回购...! 上班的人,是吗? :)
2022-12-21 21:18:28 5.69MB opencv machine-learning image computer-vision
1