用于构建高质量数据集和计算机视觉模型的开源工具。 •• •••• 是由创建的开源ML工具,可帮助您构建高质量的数据集和计算机视觉模型。 使用FiftyOne,您可以搜索,排序,过滤,可视化,分析和改善数据集,而无需进行过多的整理或编写自定义脚本。它还提供了用于分析模型的强大功能,使您能够了解模型的优缺点,可视化,诊断和纠正其故障模式,等等。 FiftyOne的设计轻巧,可轻松集成到您现有的CV / ML工作流程中。 您可以加入我们的Slack社区,阅读我们在Medium上的博客,并在社交媒体上关注我们,从而参与其中: 安装 您可以通过pip安装FiftyOne的最新稳定版本: pip install fiftyone 请查阅以获取故障排除以及有关使用FiftyOne进行启动和运行的其他信息。 快速开始 通过启动快速入门,直接进入FiftyOne: fiftyone quicksta
1
MRPT项目 一、简介 移动机器人编程工具包 (MRPT) 提供了面向移动机器人和计算机视觉研究人员的 C++ 库。 库包括、 、 、点、地标、姿势和地图上的 、贝叶斯推理(卡尔曼滤波器、 粒子滤波器)、 图像处理、避障等。 MRPT还提供了GUI应用立体照相机校准,数据集检查,并更。 2. 资源 下载最新的不稳定代码: git clone https://github.com/MRPT/mrpt.git --depth 1 在此 Google 群组或stackoverflow提问(请使用标签mrpt !) 主要项目网站,包括源代码和 Windows 安装程序下载 C++ API 参考 ROS 包: mrpt_navigation , mrpt_slam 绑定文档(Python、Matlab) 数十个示例的源代码 可以在以下位置找到 MRPT 应用程序的示例配置文件: MRPT
2022-09-26 19:52:21 31.74MB c-plus-plus computer-vision robotics maps
1
具有自适应时间特征分辨率的3D CNN CVPR 2021论文的源代码: 。 即将推出! 敬请关注! @inproceedings{sgs2021, Author = {Mohsen Fayyaz, Emad Bahrami, Ali Diba, Mehdi Noroozi, Ehsan Adeli, Luc Van Gool, Juergen Gall}, Title = {{3D CNNs with Adaptive Temporal Feature Resolutions}}, Booktitle = {{The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) }}, Year = {2021} }
1
凸轮2BEV 该存储库包含我们的方法的官方实现,该方法用于在语义上分割的鸟瞰图(BEV)图像的计算中,给出了多个车载摄像机的图像,如本文所述: 一种Sim2Real深度学习方法,用于将图像从多个车载摄像头转换为鸟瞰视图中的语义分割图像( , ) , 和 摘要—准确的环境感知对于自动驾驶至关重要。 当使用单眼相机时,环境中元素的距离估计带来了重大挑战。 将相机透视图转换为鸟瞰图(BEV)时,可以更轻松地估算距离。 对于平坦表面,反透视贴图(IPM)可以将图像准确地转换为BEV。 这种转换会使三维物体(如车辆和易受伤害的道路使用者)变形,从而使得很难估计它们相对于传感器的位置。 本文介绍了一种方法,该方法可从多个车载摄像机获得的图像中获得校正后的360°BEV图像。 校正后的BEV图像被分割成语义类别,并且包括对遮挡区域的预测。 神经网络方法不依赖人工标记的数据,而是在合成数据集
1
棋盘识别 该项目重点介绍了采用计算机视觉技术处理棋盘图像并识别棋盘配置的方法。 尽管将棋盘检测用于相机校准是一个经典的视觉问题,但是现有的棋子识别技术在受控环境下仍能正常工作。 程序针对所选的彩色棋盘和一组特定的棋子而定制。 该项目中使用的方法通过使用聚类来分割棋盘和棋子,而与颜色方案无关,对现有研究进行了补充。 对于棋子识别,该方法引入了一种新颖的方法,该方法使用R-CNN训练鲁棒的分类器以处理不同类型的棋盘棋子。 与基于SIFT的分类器相比,该方法在不同种类的样本上表现更好。 如果扩展,这项工作对于记录动作和培训国际象棋AI以预测特定棋盘配置的最佳可能动作可能很有用。 方法堆栈: 获
2022-08-07 10:18:36 82.49MB board-game chess computer-vision neural-network
1
裂缝的 Unet 语义分割 使用 PyTorch、OpenCV、ONNX 运行时的实时裂缝分割 依存关系: 火炬 OpenCV ONNX 运行时 CUDA >= 9.0 指示: 1.使用您的数据集训练模型并在supervisely.ly上使用unet_train.py保存模型权重(.pt文件) 2.使用pytorch_to_onnx.py将模型权重转换为ONNX格式 3.使用crack_det_new.py获取实时推理 裂纹分割模型文件可点击此下载 结果: 图表:
1
ISIC 2018:黑色素瘤检测的皮肤病变分析 概括 更新:2018年7月15日,包括k倍验证以及验证/测试预测和提交。 该存储库为基于Keras / Tensorflow的ISIC-2018挑战的任务1和任务3提供了一个起始解决方案。 当前达到的性能是: 任务1 任务3 平均Jaccard的81.5% 准确度达83% 阈值Jaccard的77.2% 平均召回率68.5% 我们支持Keras支持的大多数骨干网(Inception,Densenet,VGG等)。 对于分段问题,我们还支持在U-Net类型结构中使用Keras预训练主干。 该代码是高度可配置的,允许您更改和尝试算法的许多方面。 下面,我们描述如何运行基准解决方案。 安装/设置 该代码使用:Python 3.5,Keras 2.1.6和TensorFlow 1.8.0。 请参阅需求文件以获取所需的软件包。 请
1
什么是DarkMark? DarkMark是一个C ++ GUI工具,用于对神经网络中使用的图像进行注释。 它是专门为与神经网络框架一起使用而编写的,并具有为Darknet和YOLO量身定制的一些功能。 首次启动DarkMark时,可以指定Darknet样式的神经网络来加载所选项目。 DarkMark使用该神经网络来帮助您标记更多图像。 存在几种不同的查看功能,可以快速查看所有注释并突出显示一些常见错误。 准备就绪后,DarkMark也可用于生成所有Darknet和YOLO(或其他)配置文件,以训练新的神经网络。 这包括对.cfg文件以及.data,培训和验证.txt文件所需的修改。 DarkMark还将创建一些Shell脚本以开始培训并在计算机之间复制必要的文件。 执照 DarkMark是开源的,并使用GNU GPL v3许可证发布。 有关详细信息,请参见license.txt。
1
Driver-assistance features of vehicles are essentially based on data provided by various sensors such as radar, LIDAR, ultrasound, GPS, inertial measurement unit (IMU), or cameras. In this book, we discuss the use of cameras for driver assistance.
2022-07-09 16:39:18 11.74MB 计算机视觉 辅助驾驶 computer vis
1
农业深度学习 前处理 比赛项目 竞赛 笔记本 准确性 模型 97% 参考 1-fvfdf
2022-07-07 21:54:34 5KB computer-vision deep-learning agriculture
1