计算机视觉:模型学习和推理(算法) Simon JD Prince教授撰写的《计算机视觉:模型学习和推理》一书中算法的Python实现。 这本书,算法。 这些算法是根据本书中的章节进行组织的,这些章节介绍了与机器学习和计算机视觉有关的几个主题。 第四章 本章概述了用于将概率模型拟合到数据的方法。 本章涵盖了三种方法,每种方法都有两个示例:最大似然估计(4.1,4.4),最大后验(4.2,4.5)和贝叶斯方法(4.3,4.6)。 第一组示例用于单变量正态分布,而第二组示例用于类别分布。 Cahpter 6 本章重点介绍计算机视觉模型的两个主要类别。 那些在给定数据的情况下对世界状态的概率进行建模的模型(判别式),以及在给定世界状态的情况下对数据进行概率的建模的模型(生成式)。 本章只有一种算法,它是基本的生成分类器,可以在Chapter_6文件夹中找到。 此外,如书中所述,生成分类器用
2022-11-14 12:13:25 211KB machine-learning algorithm computer-vision Python
1
Robomaster2018-SEU-开源 这是东南大学为Robomaster 2018设计的一个项目,其中包括完成自动射击和符文检测任务的完整过程。 包括装甲检测,符文检测,角度求解算法和驱动程序,串行通信。 这基本上是我们在比赛中使用的代码。 1.要求 平台: 杰特逊TX2 ubuntu16.04 环境 QT5 OpenCV3.4.0(Opencv4Tegra) 2.项目框架 Armor , Rune & Pose :此处实现了三个核心算法。 您可以在这三个目录下阅读文档。 Darknet :我们需要运行该项目的深度学习库,您需要首先对其进行编译。 驱动程序:相机驱动程序。 常规:所有程序的常规资源。 串行:与STM32的串行通信协议。 Main :程序进入。 图:文档的资源文件 3.配置 1.克隆项目 将项目克隆到您执行的目录。 如果不确定,则/home/usrname/就可以了。 2.编译darknet库 darknet库是实现Rune Detection中的深度学习算法所需的依赖库。 为了满足我们的需求,我们对原始库进行了一些更改。 无论如何,请确保先进行
2022-11-10 17:41:27 6.57MB computer-vision cpp deeplearning opencv3
1
模糊和清晰的图像分类 分类模糊和清晰的图像 介绍 在日常生活中,由于聚焦不佳,帧中物体的运动或在捕获图像时的握手运动,我们会遇到从相机单击的不良图像。 Blur is typically the thing which **suppress the high-frequency** of our Images, therefore can be detected by using various low-pass filter eg. Laplacian Filter. 作为一个聪明的人(我自己是CS人士),我们不想手动过滤掉清晰和模糊的图像,因此我们需要一些聪明的方法来删除不必要的图像。 LoG筛选器 我还应用了高斯( )滤波器的拉普拉斯算子来检测模糊图像,但是很难找到区分图像所需的阈值的确切值。 尽管结果并不令人着迷。 使用方差 一些讨论 LoG参考: 在Python中实现
1
社交隔离 Social-Danceancing是一个开源项目,用于自动估计与未经校准的RGB相机的人际距离。 该软件可免费用于任何非商业应用,以评估对安全距离的遵守情况。 该代码是开放的,可以在您的支持下进行改进,如果您想帮助我们,请至与我们联系。 什么是新的 [2020年12月18日] 现在可以从以下链接下载数据集: 。 [2020年11月5日] 我们的工作已被WACV 2021接受。 拿出! [2020年11月4日] 算法更新,具有更好的距离评估和更快的计算速度 快速椭圆交点用Shapely检查 添加了遮罩支持以选择有趣的区域 流媒体支持 从Jetson nano相机获取 支援Cuda 10.1的Ubuntu 20.04 [2020年4月24日] 用于实时摄像机采集和视频处理的代码。 文件夹中的新视频示例。 描述 给定从场景捕获的帧,该算法首先使用现成的身体姿势检测器检测场
2022-11-08 16:53:13 1.33MB ai computer-vision openpose social-distancing
1
动手学深度学习(D2L深度学习) | 理解深度学习的最佳方法是学以致用。 本开源项目代表了我们的一种尝试:我们将教给读者概念,背景知识和代码;我们将在同一个地方分解剖析问题所需的批判性思维,解决问题所需的数学知识,以及实现解决方案所需的工程技能。 我们的目标是创造一个为实现以下目标的统一资源: 所有人在网上免费获取; 提供足够的技术深度,从而帮助读者实际成为深度学习应用科学家:既理解数学原理,又能够实现并不断改进方法; 包括可运行的代码,为读者展示如何在实际中解决问题。这样直接直接将数学公式对应成实际代码,而且可以修改代码,观察结果并及时获取经验; 允许我们和整个社区不断快速迭代内容,从而紧跟仍在高速发展的深度学习领域; 由包含有关技术细节问答的论坛作为补充,使大家可以相互相互答疑并交换经验。 将本书(中英文版)利用教材或参考书的大学 如果本书对你有帮助,请星级(★)本仓库或引用本书英文版: @book{zhang2020dive, title={Dive into Deep Learning}, author={Aston Zhang and Zachary C.
1
人工解析的自我校正 开箱即用的人类解析表示提取器。 在第三项LIP挑战中,我们的解决方案在所有人工解析轨道(包括单个,多个和视频)中排名第一! 特征: 开箱即用的人类解析提取器,可用于其他下游应用程序。 在三个流行的单人人类解析数据集上进行预训练的模型。 训练和伪造的代码。 对多人和视频人的解析任务的简单而有效的扩展。 要求 conda env create -f environment.yaml conda activate schp pip install -r requirements.txt 简单的开箱即用提取器 最简单的入门方法是在您自己的图像上使用我们训练有素的SCHP模型来提取人工解析表示形式。 在这里,我们在三个流行的数据集上提供了最新的。 这三个数据集具有不同的标签系统,您可以选择最适合自己任务的数据集。 LIP( ) 进行LIP验证的费用:59.36
1
医学成像中的深度学习:如何在MRI检查中自动检测膝盖受伤? 该存储库包含一个卷积神经网络的实现,该网络对MRI检查中特定的膝盖损伤进行分类。 它还包含我在上撰写的一系列帖子的材料。 数据集:MRNet 数据来自斯坦福大学ML Group研究实验室。 它由斯坦福大学医学中心进行的1,370次膝盖MRI检查,以研究前交叉韧带(ACL)眼泪的存在。 有关ACL撕裂问题和MRNet数据的更多信息,请参阅我的博客文章,您可以在Jupyter Notebook中调查数据并构建以下数据可视化: 要了解有关数据以及如何实现此可视化窗口小部件的更多信息,请阅读 代码结构: 下表总结了该项目的体系结构: 有关该代码的更多详细信息,请参阅我的第二篇。 如何使用代码: 如果您想自己重新训练网络,则必须通过此向斯坦福大学索取数据。 下载数据后,创建一个data文件夹并将其放置在项目的根目录下。 您
2022-10-10 15:30:20 11.29MB computer-vision deep-learning acl cnn
1
用于构建高质量数据集和计算机视觉模型的开源工具。 •• •••• 是由创建的开源ML工具,可帮助您构建高质量的数据集和计算机视觉模型。 使用FiftyOne,您可以搜索,排序,过滤,可视化,分析和改善数据集,而无需进行过多的整理或编写自定义脚本。它还提供了用于分析模型的强大功能,使您能够了解模型的优缺点,可视化,诊断和纠正其故障模式,等等。 FiftyOne的设计轻巧,可轻松集成到您现有的CV / ML工作流程中。 您可以加入我们的Slack社区,阅读我们在Medium上的博客,并在社交媒体上关注我们,从而参与其中: 安装 您可以通过pip安装FiftyOne的最新稳定版本: pip install fiftyone 请查阅以获取故障排除以及有关使用FiftyOne进行启动和运行的其他信息。 快速开始 通过启动快速入门,直接进入FiftyOne: fiftyone quicksta
1
MRPT项目 一、简介 移动机器人编程工具包 (MRPT) 提供了面向移动机器人和计算机视觉研究人员的 C++ 库。 库包括、 、 、点、地标、姿势和地图上的 、贝叶斯推理(卡尔曼滤波器、 粒子滤波器)、 图像处理、避障等。 MRPT还提供了GUI应用立体照相机校准,数据集检查,并更。 2. 资源 下载最新的不稳定代码: git clone https://github.com/MRPT/mrpt.git --depth 1 在此 Google 群组或stackoverflow提问(请使用标签mrpt !) 主要项目网站,包括源代码和 Windows 安装程序下载 C++ API 参考 ROS 包: mrpt_navigation , mrpt_slam 绑定文档(Python、Matlab) 数十个示例的源代码 可以在以下位置找到 MRPT 应用程序的示例配置文件: MRPT
2022-09-26 19:52:21 31.74MB c-plus-plus computer-vision robotics maps
1
具有自适应时间特征分辨率的3D CNN CVPR 2021论文的源代码: 。 即将推出! 敬请关注! @inproceedings{sgs2021, Author = {Mohsen Fayyaz, Emad Bahrami, Ali Diba, Mehdi Noroozi, Ehsan Adeli, Luc Van Gool, Juergen Gall}, Title = {{3D CNNs with Adaptive Temporal Feature Resolutions}}, Booktitle = {{The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) }}, Year = {2021} }
1