此例程将向量自回归 (VAR) 的参数估计映射到相应移动平均 (MA) 模型的参数估计中。 此函数的输出可用于构建 VAR 模型的结构脉冲响应函数。
2022-03-07 10:46:35 1KB matlab
1
张量 张量时间序列的因子和自回归模型 R包张量TS包括我们最近的论文中的方法,包括高维张量时间序列的因子模型和自回归模型。 要了解更多详细信息,请参阅手册文件以获取完整的文档。 安装 您可以使用以下方法从安装tensorTS的发行版本: install.packages( " tensorTS " ) 以及来自的开发版本,其中包括: # install.packages("devtools") devtools :: install_github( " ZeBang/tensorTS " )
2022-03-05 14:48:56 34KB R
1
使用matlab实现贝叶斯向量自回归模型,可用于经济学中的预测
2022-02-28 21:38:27 155KB 贝叶斯预测 regression 贝叶斯预测 回归
研究网络流量预测精度问题, 网络流量受多种因素的综合影响, 其变化具有周期性、非线性和随机性等特点, 将ARIMA模型和SVM模型相结合建立一种网络流量预测模型。采用ARIMA预测网络流量周期性和线性变化趋势; 然后采用SVM对网络流量非线性和随机性趋势进行拟合; 最后将两者结果再次输入SVM进行融合, 得到网络流量最终预测结果。采用具体网络流量数据对模型性能进行测试, 仿真结果表明, ARIMA-SVM提高了网络流量预测精度, 降低了预测误差, 能更全面刻画网络流量变化规律。
1
根据 Kareem E. Baddour 提出的工作:“用于衰落信道仿真的自回归建模”,IEEE 无线通信交易,2005 年 7 月,此 MATLAB 函数可用于基于自回归模型生成时变瑞利衰落信道。
2022-02-15 16:26:46 978B matlab
1
数学建模-自回归分布滞后模型(ADL)的运用实验指导.zip
2022-01-20 17:01:53 152KB 回归 数据挖掘 人工智能 机器学习
arma模型matlab代码py-ARFIMA 此Python代码是在我在LARIS()实习期间开发的。 该代码已改编自Simone Fatichi()的Matlab代码ARFIMA Simulations。 正如Boris Podobnik和H. Eugene Stanley:“去趋势互相关分析:一种用于分析两个非平稳时间序列的新方法”(2008)()所述,仅对该代码进行了测试,以生成信号。 即,对于固定为N的信号,固定为0 <d <0.5,正常的随机噪声:er = np.random.normal(0,1,N)并且没有其他输入。 此python代码实现了一个函数来生成ARFIMA(自回归分数整数移动平均值)模型。 这些模型概括了ARIMA(自回归综合移动平均线)和ARMA(自回归移动平均线)模型。 ARFIMA模型允许使用差分参数的非整数值,并且在建模具有较长内存的时间序列时很有用。 该模型通常表示为ARFIMA(p,d,q)模型,其中d是微分参数,p和q分别是模型的自回归和移动平均部分的顺序。 此包使用numpy包()
2022-01-05 21:59:08 3KB 系统开源
1
matlab分时代码BVAR连接 描述 这是一种用户友好的Matlab GUI,它对贝叶斯多主题向量自回归(VAR)模型实施了变分推理方法,以便基于静止状态功能MRI数据来推理有效的大脑连通性。 建模框架使用贝叶斯变量选择方法,以允许在主题级别和小组级别同时推断有效的连接性。 它还可以灵活地将多模式数据(尤其是结构性DTI数据)集成到现有结构中。 我们开发的变分推理方法可实现方法的可扩展性,并能够根据数据的全脑分割来估计主题级和小组级的大脑连接网络 下面的手稿中描述了变分方法的方法论和详细实现: Chiang,S.,Guindani,M.,Yeh,HJ,Haneef,Z.,Stern,JM和Vannucci,M.(2017)。 使用多模态神经影像数据进行多主体有效连通性推理的贝叶斯矢量自回归模型。 人脑映射,38,1311-1332。 Kook,JH,Vaughn,KA,DeMaster,DM,Ewing-Cobbs,L.和Vannucci,M.(2020年)。 BVAR-连接:用于大脑连接网络推理的多主题向量自回归模型的变分贝叶斯方法。 神经信息学的出现。 内容和安装。 该存储库包含
2021-12-20 22:14:54 17.96MB 系统开源
1
目的压缩感知理论突破了传统的Shanon-Nyquist采样定理的限制,能够以较少的采样值来进行原信号的恢复。针对压缩感知图像重建问题,提出一种基于优化加权全变差(TV)的复合正则化压缩感知图像重建模型。方法提出的重建模型是以TV正则化模型为基础。首先,为克服传统TV正则化会导致重建图像的边缘和纹理细节部分模糊或丢失的缺点,引入图像的梯度信息估计权重,构建加权TV的重建模型。其次,利用全变差去噪(ROF)模型对权重进行优化估计,从而减少计算权重时受噪声的影响。再次,将非局部结构相似性先验和局部自回归性先验引入提出的加权TV模型,得到优化加权TV的复合正则化重建模型。最后,结合投影法和算子分裂法对优化模型求解。结果针对自然图像的不同特性,使用复合正则化先验进行建模,实验结果表明上述重建问题通过本文方法得到了很好的解决,加权TV正则化先验使得图像的平坦区域和强边重建较好,而非局部结构相似性先验和局部自回归性先验能够保证图像的精细结构部分的重建效果。结论与其他基于TV正则化的重建模型相比,本文模型的重建性能无论是在视觉效果还是在客观评价指标上都有明显的提高。
1
多元广义自回归条件异方差模型(GARCH),即多元GARCH或MGARCH。用于多元建模及预测。
2021-12-03 16:33:44 327KB 多元GARCH MGARCH
1