matlab分时代码-BVAR_connect:贝叶斯多主体向量自回归(VAR)模型用于基于静止状态功能MRI数据推断有效的大脑连通性

上传者: 38555229 | 上传时间: 2021-12-20 22:14:54 | 文件大小: 17.96MB | 文件类型: -
matlab分时代码BVAR连接 描述 这是一种用户友好的Matlab GUI,它对贝叶斯多主题向量自回归(VAR)模型实施了变分推理方法,以便基于静止状态功能MRI数据来推理有效的大脑连通性。 建模框架使用贝叶斯变量选择方法,以允许在主题级别和小组级别同时推断有效的连接性。 它还可以灵活地将多模式数据(尤其是结构性DTI数据)集成到现有结构中。 我们开发的变分推理方法可实现方法的可扩展性,并能够根据数据的全脑分割来估计主题级和小组级的大脑连接网络 下面的手稿中描述了变分方法的方法论和详细实现: Chiang,S.,Guindani,M.,Yeh,HJ,Haneef,Z.,Stern,JM和Vannucci,M.(2017)。 使用多模态神经影像数据进行多主体有效连通性推理的贝叶斯矢量自回归模型。 人脑映射,38,1311-1332。 Kook,JH,Vaughn,KA,DeMaster,DM,Ewing-Cobbs,L.和Vannucci,M.(2020年)。 BVAR-连接:用于大脑连接网络推理的多主题向量自回归模型的变分贝叶斯方法。 神经信息学的出现。 内容和安装。 该存储库包含

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明