将自适应矩估计算法(Adam)作为反向传播算法应用于普通的三层神经网络(输入层、隐含层、输出层)的反向传播过程,之后建立数据预测模型进行数据预测,压缩包中Adam.py为训练过程源码,test.py为测试过程源码,train.csv文件为训练数据集,test.csv文件为测试数据集,.npy文件为模型训练后保存的参数。
1
基于径向基神经网络(RBFNN)的数据预测模型(Python实现),压缩包中源码RBFNN.py为模型的训练过程,训练结束后会保存训练好的的模型参数,test.py主要用于利用训练好的模型对测试数据集进行预测,输出结果包括各种误差指标,.npy文件为训练后生成的中心点、宽度向量等参数,train.csv为训练数据集,test.csv为测试数据集。
1
使用Python实现广义回归神经网络(GRNN)用于数据预测,压缩包中源码GRNN.py主要用于使用训练数据集进行模型训练,同时对测试数据集进行预测,输出结果包括MAE、MAPE等误差值以及预测差值的分布情况等,train.csv为训练数据集,test.csv为测试数据集,.npy文件为保存预测的值及预测误差值。
1
本资源为深度学习课程设计 含课程设计完整过程的数据集以及实验报告 可供参考 由matlab代码编写构建双层CNN卷积神经网络识别Minist的手写体数据,其中将不断改进的代码跟另外使用工具函数编写的另一个CNN程序结果比较,有一个较为直观的运行效果对比。能够很好的看出程序设计的优劣。使用的是双层卷积神经网络,后向传播用的是随机梯度下降及其优化版本。 适用于CNN初学者以及希望更进一步的学习者。 dataset是MNIST。这里层的概念是指convolution+pooling 函数说明: read_label和read_image分别为读取标签和图像数据点的函数 convolve是实现卷积的函数,pool是实现池化的函数 SGD_MSGD是主函数,把minibatch设为1就是SGD,大于1就是MSGD OPTIMAL是优化版的主函数,OPTIMAL_FINALE是最终优化版的主函数,toolbox是用工具箱函数写的CNN,用于对比之前函数的运行效果。 SGD_MSGD,OPTIMAL,OPTIMAL_FINALE,toolbox都可以直接运行得到答案
1
压缩包主要包含用于数据预测的小波神经网络(WNN)源码及预测的数据集,其中WNN.py主要用于使用训练数据集进行模型训练,生成对应的训练后模型参数,test.py主要用于利用训练好的模型对测试数据集进行预测,输出结果包括MAE、MAPE等误差值以及预测差值的分布情况等,train.csv为训练数据集,test.csv为测试数据集,.npy文件为训练后生成的权值、平滑因子、伸缩因子等参数。
2023-02-12 22:25:34 7KB 小波神经网络 数据预测 Python WNN
1
实现基于Python的BP神经网络数据预测模型,压缩包中包含文件如下:源码BPNN.py主要用于使用训练数据集进行模型训练,生成对应的训练后模型参数;test.py主要用于利用训练好的模型对测试数据集进行预测,输出结果包括MAE、MAPE等误差值以及预测差值的分布情况等;train.csv为训练数据集,test.csv为测试数据集,.npy文件为训练后生成的权值、阈值。
1
基于机器学习实现的农作物病虫害识别系统源码+数据(python).zip利用阿里云识农api和机器学习实现的农作物病虫害识别系统。目前,人工智能技术在农业领域的普及应用,还存在着数据共享不足、算法门槛过高、算力垄断、实验与应用环境差距过大等问题。所以,本文基于阿里云计算技术与人工智能机器学习的计算机视觉技术,开发了一套跨平 台、易使用的农作物病虫害自动识别系统,大幅降低了人工智能技术的使用门槛,使农业 从业人员也可享受智能技术红利,促进智慧农业发展。 基于机器学习实现的农作物病虫害识别系统源码+数据(python).zip利用阿里云识农api和机器学习实现的农作物病虫害识别系统。目前,人工智能技术在农业领域的普及应用,还存在着数据共享不足、算法门槛过高、算力垄断、实验与应用环境差距过大等问题。所以,本文基于阿里云计算技术与人工智能机器学习的计算机视觉技术,开发了一套跨平 台、易使用的农作物病虫害自动识别系统,大幅降低了人工智能技术的使用门槛,使农业 从业人员也可享受智能技术红利,促进智慧农业发展。 基于机器学习实现的农作物病虫害识别系统源码+数据(python).zip利用阿里云识
基于yolov7+crnn的车牌检测和中文车牌识别项目源码+数据集+项目说明.zip 国内中文车牌都可识别 【备注】主要针对正在做毕设的同学和需要项目实战的深度学习cv图像识别模式识别方向学习者。 也可作为课程设计、期末大作业。包含:项目源码、训练好的模型、项目操作说明等,该项目可直接作为毕设使用。 也可以用来学习、参考、借鉴。如果基础不错,在此代码上做修改,训练其他模型。
2022-12-27 09:30:04 55.64MB yolov7 rcnn 车牌检测 车牌识别
基于PaddleDetection中SSD算法实现的火焰识别检测源码+数据集+训练好的模型 配置文件都配置好 数据集都配置好,有数据配置脚本,执行一下即可。 训练好的模型,数据集 备注】主要针对正在做毕设的同学和需要项目实战的深度学习cv图像识别模式识别方向学习者。 也可作为课程设计、期末大作业。包含:项目源码、训练好的模型、项目操作说明等,该项目可直接作为毕设使用。 也可以用来学习、参考、借鉴。如果基础不错,在此代码上做修改,训练其他模型。
使用LSTM、GRU、BPNN进行时间序列预测源码+数据集(课设源码).zip 使用LSTM、GRU、BPNN进行时间序列预测 Jupyter Notebook 课程大作业 使用LSTM、GRU、BPNN进行时间序列预测 Jupyter Notebook 课程大作业
2022-12-24 20:26:50 58KB JupyterNotebook LSTM GRU BPNN