pytorch实现基于LSTM的高速公路车辆轨迹预测源码+数据集.zip

上传者: chengxuyuanlaow | 上传时间: 2023-05-21 14:04:07 | 文件大小: 311KB | 文件类型: ZIP
pytorch实现基于LSTM的高速公路车辆轨迹预测源码+数据集.zip 第1步:轨迹数据滤波,将原始US101和I-80的原始数据放入下图文件夹,运行代码"trajectory_denoise.py",结果如下: image 第2步:移除不必要特征以及添加新特征,运行代码"preprocess.py",结果如下: image 第3步:根据需要添加横、纵向速度和加速度特征,运行代码"add_v_a.py",结果如下: image 第4步:按照滑动窗口法提取所需8s轨迹序列,运行代码"final_DP.py",结果如下: image 第5步:最终合并US101和I-80数据集,为保证数据的均衡性以及充分利用数据集,随机采样10组数据集,每组按照6:2:2的比例划分训练集、测试集和验证集;运行代码"merge_data.py". 模型训练及测试 MTF-LSTM模型训练,运行代码"MTF-LSTM.py" MTF-LSTM-SP模型训练,运行代码"MTF-LSTM-SP.py" 本文训练好的MTF-LSTM和MTF-LSTM-SP模型保存在文件夹/algorithm

文件下载

资源详情

[{"title":"( 15 个子文件 311KB ) pytorch实现基于LSTM的高速公路车辆轨迹预测源码+数据集.zip","children":[{"title":"mtf-lstm-master","children":[{"title":"教程.txt <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"img","children":[{"title":"N_step1.png <span style='color:#111;'> 15.40KB </span>","children":null,"spread":false},{"title":"N_step2.png <span style='color:#111;'> 11.29KB </span>","children":null,"spread":false},{"title":"NGSIM_data.png <span style='color:#111;'> 264.00KB </span>","children":null,"spread":false},{"title":"N_step3.png <span style='color:#111;'> 10.74KB </span>","children":null,"spread":false},{"title":"N_step4.png <span style='color:#111;'> 14.03KB </span>","children":null,"spread":false}],"spread":true},{"title":"algorithm","children":[{"title":"MTF-LSTM-test.py <span style='color:#111;'> 13.71KB </span>","children":null,"spread":false},{"title":"MTF-LSTM-SP.py <span style='color:#111;'> 14.32KB </span>","children":null,"spread":false},{"title":"MTF-LSTM-SP-test.py <span style='color:#111;'> 13.84KB </span>","children":null,"spread":false},{"title":"MTF-LSTM.py <span style='color:#111;'> 14.33KB </span>","children":null,"spread":false}],"spread":true},{"title":"data_process","children":[{"title":"NGSIM","children":[{"title":"merge_data","children":[{"title":"merge_data.py <span style='color:#111;'> 5.42KB </span>","children":null,"spread":false}],"spread":true},{"title":"preprocess","children":[{"title":"preprocess.py <span style='color:#111;'> 17.91KB </span>","children":null,"spread":false}],"spread":true},{"title":"trajectory_denoise","children":[{"title":"trajectory_denoise.py <span style='color:#111;'> 3.83KB </span>","children":null,"spread":false}],"spread":true},{"title":"final_DP","children":[{"title":"final_DP.py <span style='color:#111;'> 15.48KB </span>","children":null,"spread":false}],"spread":true},{"title":"add_v_a","children":[{"title":"add_v_a.py <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明