Place365GoogLeNet 是在 Places365 数据集上训练的预训练模型,其底层网络架构与在 ImageNet 数据集上训练的 GoogLeNet 相同。 您可以使用网络阅读 句法净= googlenet net = googlenet('权重',权重) net = googlenet('Weights',weights) 返回在 ImageNet 或 Places365 数据集上训练的 GoogLeNet 网络。 如果权重等于“imagenet”,则网络具有在 ImageNet 数据集上训练的权重。 如果权重等于“places365”,则网络具有在 Places365 数据集上训练的权重。 从您的操作系统或 MATLAB 中打开 place365googlenet.mlpkginstall 文件将启动您拥有的版本的安装过程。 此 mlpkginstall 文件适用
2023-03-25 14:42:22 6KB matlab
1
图片来源于生活场景,总共40个类别,数量14000+;可用于训练垃圾分类网络,用于识别城市垃圾
2023-03-24 21:58:49 538.71MB 垃圾分类 计算机视觉 深度学习
1
深度学习中,对不同类的数据集图片进行分类,使得训练集、测试集、验证集中含有的图片类别不冲突。例如我手头有一个医学图像处理的数据集,我要检测图片中的病变类别,分清他是肿瘤、创伤还是其它问题,因为每一类图片都对应着多个病人,但在实际训练过程中,同一个病人的病变图片差不多,如果分属于训练集、验证集、测试集,那么检测精度一定会有是会有所下降,所以需要先进行一次分类。这个程序就是起到这样一个作用。classify.py #读取图片前六位 def sixTop(fileList): sixTopName = list() for name in fileList: sixTopName.append(name[0:6]) return sixTopName #判断前六位数字是否重复,输出次数 def imgRepeat(L): repeatList = [] setList = set(L) flag=True if len(L) != len(setList): flag=False
2023-03-24 20:00:48 6KB python 深度学习 数据集分类
1
史上最全猫狗二分类、以pytorch为基础的猫狗二分类、预测准确率超高的猫狗二分类、软件工程必看
2023-03-24 15:00:32 74.59MB pytorch pytorch 软件工程 k12
1
文本分类,
2023-03-23 16:48:22 569KB mac
1
pytorch环境下,使用Resnet网络开发的垃圾分类系统,包含数据集,测试集,和测试结果。分类数据包含(电池、塑料瓶、蔬菜、香烟、易拉罐) 分类准确度达到了96%
2023-03-22 20:52:47 332.46MB 深度学习 Resnet 垃圾分类
1
手语是听力障碍人士交流的媒介。 它使用手势而不是声音来传达意义。 它结合了手的形状、手、手臂或身体的方向和运动、面部表情和唇形来传达信息。 不同类型的项目是针对聋哑人、听力障碍的人进行的。 提出了一种用于手语识别的具有计算机人机界面的系统。 但是该项目存在全国范围内的差异。 该项目的主要思想是设计一个系统,用于在任何公共场所与外界进行交流,从而无需在公共场所进行口译。 在那个项目中,我们需要以数字符号的印度手语为数据库形式的孤立图像。 普通相机可用于获取此数字符号。 主成分分析 (PCA) 用于预处理,其中删除冗余和不需要的数据。
2023-03-22 20:46:07 621KB PCA morphological processes
1
针对神经网络存在的过学习、欠学习、局部极小值等问题,提出了一种基于支持向量机(SVM)的数字调制方式的识别方法。从信号的瞬时幅度,瞬时相位,瞬时频率,频谱,包络变化等特性中提取了7个特征参数,用于训练支持向量机。运用二叉树理论设计多类分类器,与已有算法相比,具有简单、高速、高精度的特点。仿真结果证明,在高斯白噪声(AWGN)下,当信噪比大于15dB时,对2ASK、4ASK、8ASK、2FSK、4FSK、8FSK、BPSK、QPSK、8PSK调制方式的识别率可以达到97%以上。
1
基于Javaweb垃圾分类管理系统源码
2023-03-22 18:12:56 22.1MB Java MySQL 垃圾分来 管理系统
1
本项目通过textcnn卷积神经网络实现对文本情感分析识别,由python 3.6.5+Pytorch训练所得。
2023-03-22 16:44:42 289KB pytorch python 文本分类 情感分析
1