上个周末,我经历了一场思想狂潮。如果我有一个图像数据集,它非常非常小,我想自己捕获、并希望教会计算机能够识别或区分一些指定的类别,我应该怎么办呢?假设我有几千张图像,我想训练一个模型,能够从一个类别自动检测出另一个类别。但是,我只有这么少的数据,那我能不能够训练出一个深度神经网络来成功地对这些图进行像分类呢?经过研究,我发现,人们在计算机视觉领域中遇到的常见情况是:用很少的数据来训练深度神经网络。让我们面对这一现实:并非每个人都可以访问Google或Facebook这样的大数据,而且有些数据很难获得。但我也发现,这种问题的解决方案其实非常简单。今天,我将带领你们学习如何使用那些较小的图像数据集
2021-12-16 20:19:00 4.26MB 使用keras进行图像分类
1
基于半监督广义学习系统的高光谱图像分类
2021-12-15 14:55:31 640KB 研究论文
1
机器学习是许多人在人类生活的各个领域中不可或缺的技术。 它遍及全球的现代生活中,并具有多种用途。 一种应用是图像分类,它涵盖了许多影响领域,例如商业,金融,医药等,以提高产量,原因,效率等。这种对更精确,面向细节的分类的需求增加了对修改,改编,和深度学习算法的创新。 本文使用卷积神经网络(CNN)对CIFAR-10数据库中的场景进行分类,并在KDEF数据库中检测情绪。 所提出的方法将数据转换到小波域以获得更高的精度和与空间域处理相当的效率。 通过将图像数据划分为子带,重要的特征学习发生在不同的低频到高频上。 所学习的低频和高频特征的组合以及对融合特征映射的处理导致检测精度的提高。 将拟议的方法与空间域CNN和堆叠式降噪自动编码器(SDA)进行比较,实验结果表明,准确性显着提高。
2021-12-14 12:08:59 2.56MB 有线电视新闻网 SDA 神经网络 深度学习
1
图像分类器-TensorFlow项目 在这个项目中,我们将首先为使用TensorFlow构建的图像分类器开发代码,然后将其转换为命令行应用程序。 我们将使用来自牛津大学的102个花卉类别的。 该项目的数据非常大-实际上,数据非常大,您无法将其上传到Github。 要求 该项目需要安装Python 3.x和以下Python库: 在终端中运行任何命令之前,请确保使用pip安装TensorFlow 2.0和TensorFlow Hub,如下所示: $ pip install -q -U "tensorflow-gpu==2.0.0b1" $ pip install -q -U tensorflow_hub 注意:为了完成此项目,您将需要使用GPU。 因为在您本地的CPU上运行可能无法正常工作。 您还应该仅在需要时启用GPU。 项目结构 该项目由两部分组成: 第1部分-使用深度学习开发图
1
稀疏多元逻辑回归(SMLR)是高光谱监督分类中的重要方法,然而仅仅利用光谱信息的SMLR忽略了影像本身的空间特征,在少量监督样本下的分类精度和算法的鲁棒性仍明显不足;虽然通过引入核技巧,核稀疏多元逻辑回归(KSMLR)可以部分克服上述缺点,其分类错误仍然有待进一步降低.本文基于核稀疏多元逻辑回归分类误差的统计建模分析,提出一种联合核稀疏多元逻辑回归和正则化错误剔除的高光谱图像分类模型.提出的模型通过引入隐概率场,采取L1范数度量KSMLR分类误差的重尾特性建立数据保真项;利用全变差(Total Variation,TV)正则化度量隐概率场的局部空间光滑性.由Indian Pines和University of Pavia数据集等实测数据应用表明,该方法可以得到更鲁棒和更高的分类精度.
1
图像分类的5种机器学习方法 传统机器学习 对图像进行识别分类
2021-12-11 22:03:34 86.34MB 机器学习 图像识别
1
提出了一种基于多尺度特征融合的细粒度图像分类方法。通过运用特征金字塔结构对不同层次的特征进行尺度变换,再进行信息融合;之后筛选其中包含细节特征最多的前三个区域图,将其与图像的全局特征共同作用以判断图片所属的子类类别。在公开的细粒度数据集CUB-200-2011、Stanford Dogs上进行了实验,得到的分类精度分别为85.7%和83.5%。实验结果表明该方法对于精细化物体分类具有一定的优越性。
2021-12-11 15:55:18 1.66MB 图像处理 细粒度图 多尺度特 特征金字
1
邻近算法,或者说是K最邻近算法,是一个相对简单的多分类算法,其基本工作原理为: 首先我们存在一个训练集,训练集中的每个图片都存在标签(已知图片属于哪一类).对于我们输入的没有标签的数据,我们将新数据中的每个特征与样本集合中的数据的对应特征进行比较,计算出二者之间的距离,然后记录下与新数据距离最近的K个样本,最后选择K个数据当中类别最多的那一类作为新数据的类别。 下面通过一个简单的例子说明一下:如下图,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形
2021-12-10 19:59:25 98KB arr axis knn
1
PASCAL Visual Object Classes Challenge 2010年的图像数据集。PASCAL Visual Object Classes 是一个图像物体识别竞赛,用来从真实世界的图像中识别特定对象物体,共包括 4 大类 20 小类物体的识别。其类别信息如下。 Person: person Animal: bird, cat, cow, dog, horse, sheep Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor
1
近些年,利用计算机对极化SAR图像进行分类逐渐成为遥感领域的一个研究热点.本文采用全极化SAR数据,利用不同的特征提取算法提取特征,并基于随机森林模型最终实现对江苏沿海滩涂的分类.首先采用H/α和Freeman两种分解算法提取极化特征参数,采用灰度共生矩阵提取纹理特征参数;然后将提取的所有特征进行不同的组合,构成不同的特征集;最后采用随机森林模型对不同特征集合进行分类和精度评估.结果表明仅用纹理特征对沿海滩涂进行分类时效果较差;利用极化分解提取出的散射特征进行分类的结果要优于矩阵元素特征的分类结果;综合了极化散射特征和纹理特征的组合方式在沿海滩涂的分类中可以取得最优的分类结果,总体精度和Kappa系数可以达到94.44%和0.9305,表明极化SAR图像中蕴含的不同方面的特征在分类中具有一定的互补性.
2021-12-09 21:38:54 2.63MB 极化SAR 极化分解 特征提取 随机森林
1