深度学习之图像分类———–K最邻近算法(KNN)

上传者: 38630358 | 上传时间: 2021-12-10 19:59:25 | 文件大小: 98KB | 文件类型: -
邻近算法,或者说是K最邻近算法,是一个相对简单的多分类算法,其基本工作原理为: 首先我们存在一个训练集,训练集中的每个图片都存在标签(已知图片属于哪一类).对于我们输入的没有标签的数据,我们将新数据中的每个特征与样本集合中的数据的对应特征进行比较,计算出二者之间的距离,然后记录下与新数据距离最近的K个样本,最后选择K个数据当中类别最多的那一类作为新数据的类别。 下面通过一个简单的例子说明一下:如下图,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明