论文研究 - 使用小波进行图像分类的卷积神经网络集成

上传者: 38614636 | 上传时间: 2021-12-14 12:08:59 | 文件大小: 2.56MB | 文件类型: -
机器学习是许多人在人类生活的各个领域中不可或缺的技术。 它遍及全球的现代生活中,并具有多种用途。 一种应用是图像分类,它涵盖了许多影响领域,例如商业,金融,医药等,以提高产量,原因,效率等。这种对更精确,面向细节的分类的需求增加了对修改,改编,和深度学习算法的创新。 本文使用卷积神经网络(CNN)对CIFAR-10数据库中的场景进行分类,并在KDEF数据库中检测情绪。 所提出的方法将数据转换到小波域以获得更高的精度和与空间域处理相当的效率。 通过将图像数据划分为子带,重要的特征学习发生在不同的低频到高频上。 所学习的低频和高频特征的组合以及对融合特征映射的处理导致检测精度的提高。 将拟议的方法与空间域CNN和堆叠式降噪自动编码器(SDA)进行比较,实验结果表明,准确性显着提高。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明