Recent developments in laser scanning technologies have provided innovative solutions for acquiring three-dimensional (3D) point clouds about road corridors and its environments. Unlike traditional field surveying, satellite imagery, and aerial photography, laser scanning systems offer unique solutions for collecting dense point clouds with millimeter accuracy and in a reasonable time. The data acquired by laser scanning systems empower modeling road geometry and delineating road design parameters such as slope, superelevation, and vertical and horizontal alignments. These geometric parameters have several geospatial applications such as road safety management. The purpose of this book is to promote the core understanding of suitable geospatial tools and techniques for modeling of road traffic accidents by the state-of-the-art artificial intelligence (AI) approaches such as neural networks (NNs) and deep learning (DL) using traffic information and road geometry delineated from laser scanning data. Data collection and management in databases play a major role in modeling and developing predictive tools. Therefore, the first two chapters of this book introduce laser scanning technology with creative explanation and graphical illustrations and review the recent methods of extracting geometric road parameters. The third and fourth chapters present an optimization of support vector machine and ensemble tree methods as well as novel hierarchical object-based methods for extracting road geometry from laser scanning point clouds. Information about historical traffic accidents and their circumstances, traffic (volume, type of vehicles), road features (grade, superelevation, curve radius, lane width, speed limit, etc.) pertains to what is observed to exist on road segments or road intersections. Soft computing models such as neural networks are advanced modeling methods that can be related to traffic and road features to the historical accidents and generates regression equations that can be used in various phases of road safety management cycle. The regression equations produced by NN can identify unsafe road segments, estimate how much safety has changed following a change in design, and quantify the effects of road geometric features and traffic information on road safety. This book aims to help graduate students, professionals, decision makers, and road planners in developing better traffic accident prediction models using advanced neural networks.
2023-03-22 16:49:12 8.29MB neural networks deep learning
1
pytorch图注意网络 这是Veličković等人提出的图注意力网络(GAT)模型的火炬实施。 (2017, )。 回购协议最初是从分叉的。 有关GAT(Tensorflow)的官方存储库,请访问 。 因此,如果您在研究中利用pyGAT模型,请引用以下内容: @article{ velickovic2018graph, title="{Graph Attention Networks}", author={Veli{\v{c}}kovi{\'{c}}, Petar and Cucurull, Guillem and Casanova, Arantxa and Romero, Adriana and Li{\`{o}}, Pietro and Bengio, Yoshua}, journal={International Conference on Learning
1
用于学习分子图的分层消息间传递 这是用于学习分子图的分层消息间传递的 PyTorch 实现,如我们的论文中所述: Matthias Fey、Jan-Gin Yuen、Frank Weichert:(GRL+ 2020) 要求 (>=1.4.0) (>=1.5.0) (>=1.1.0) 实验 可以通过以下方式运行实验: $ python train_zinc_subset.py $ python train_zinc_full.py $ python train_hiv.py $ python train_muv.py $ python train_tox21.py $ python train_ogbhiv.py $ python train_ogbpcba.py 引用 如果您在自己的工作中使用此代码,请引用: @inproceedings{Fey/etal/2020,
1
基于深度学习的生物信息学聚类方法 ”期刊的“”中发表的论文“基于深度学习的生物信息学聚类方法”的代码和补充材料。 此仓库将定期更新。 特别是,将添加更完整的Jupyter笔记本。 在本文中,我们回顾了基于深度学习的聚类分析方法,包括网络训练,表示学习,参数优化和制定聚类质量指标。 我们还讨论了在不同的场景(例如生物成像,基因表达聚类)中,基于不同的自动编码器体系结构(例如,香草,变异,LSTM和卷积)的表示学习如何比基于ML的方法(例如,PCA)更有效。 ,以及将生物医学文本聚类。 基于深度学习的无监督/聚类方法,链接到论文和代码 我们提供了基于深度学习的无监督/聚类方法,论文链接和代码的列表。 此外,还将列出提出新方法和论文的文章。 敬请期待! 标题 文章 会议/期刊 代码 卷积自动编码器(DCEC)的深度聚类 ICONIP'2017 用于一致性培训(UDA)的无监督数据增强 Arx
1
循环神经网络 神经网络的实现
2023-03-08 23:30:11 58KB Java
1
菌素 phygnn (fi-geon | ˈfi-jən)名词。 物理学指导的神经网络 一只稀有的神话鸟 物理学指导的神经网络的这种实现通过通用的损失项增强了传统的神经网络损失功能,该损失项可用于指导神经网络学习物理或理论约束。 phygnn使科学软件开发人员和数据科学家能够轻松地将机器学习模型集成到物理和工程应用程序中。当将纯数据驱动的机器学习模型应用于科学应用时,例如当机器学习模型产生物理上不一致的结果或难以推广到样本外场景时,此框架应有助于缓解一些经常遇到的挑战。 有关phygnn类框架的详细信息,请参见 例如,使用phygnn架构进行回归,分类甚至GAN应用,请参见 在国家可再生能源实验室(NREL),我们使用phygnn框架来补充传统的基于卫星的云属性预测模型。当传统的机械模型失效时,我们使用phygnn预测云的光学特性,并使用基于张量的完整辐射传递模型作为物理损耗函数,将预测
2023-03-06 11:07:31 7.89MB machine-learning neural-networks Python
1
MATLAB Deep Learning With Machine Learning, Neural Networks and Artificial Intelligence 英文无水印pdf pdf所有页面使用FoxitReader和PDF-XChangeViewer测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 本资源转载自网络,如有侵权,请联系上传者或csdn删除
2023-02-22 22:21:44 3.66MB MATLAB Deep Learning Machine
1
阻尼最小二乘法matlab代码项目1:使用多层感知器的双月分类问题 使用MLP项目1 –团队一的双月分类问题 Abhinav Karthik Sridhar科学硕士–电气工程,美国亚利桑那州立大学 Sanjay Kumar Reddy理学硕士–美国亚利桑那州立大学电气工程 Venkata Motupalli理学硕士–美国亚利桑那州立大学电气工程 摘要-该项目的关键思想是在上下月球上使用随机数据点(1000),并以给定的距离'd'进行分隔,并使用三种神经网络案例对它们进行分类:反向传播,带动量的反向传播和Levenberg- Marquardt使用多层感知器。 简介多层感知器(MLP)是一类前馈人工神经网络。 一个MLP至少由三层节点组成。 除输入节点外,每个节点都是使用非线性激活函数的神经元。 MLP利用称为反向传播的监督学习技术进行训练。 它的多层结构和非线性激活将MLP与线性感知器区分开来。 它可以区分不可线性分离的数据。 图1多层感知器网络 每个MLP都具有激活功能,隐藏层的数量以及与每个隐藏层相关的隐藏神经元的数量以及与训练方法相关的学习率。 因此,我们使用Levenberg-
2023-02-17 09:57:32 726KB 系统开源
1
神经网络和深度学习(Neural Networks and Deep Learning) by Michael Niels
2023-02-11 09:23:59 6.48MB 深度学习
1
PYNQ Classification - Python on Zynq FPGA for Neural Networks
2023-02-09 15:00:22 4.79MB python FPGA PYNQ VIVADO
1