ML-ATIC 在 API的帮助下,基于机器学习方法的异常流量识别分类器。 这是我的本科毕业设计代码。 而且代码中会有很多错误。 无论如何,在训练模型和评估中可能有一些不合适的方法。 欢迎您发现它。 有任何疑问,请给我发电子邮件! 要求 Java SE 7 Maylib中的Jars 来自KDDCUP99的数据,我使用受计算资源限制的10%版本。 安装 将TrainAndTest.zip和Model.zip解压缩到数据文件中。 通过添加原始数据的头对Train.arff和Test.arff进行了预处理。 如果有兴趣,您可以打开它,然后进行探索。 Java文件中有一些字符编码问题,它们是UTF-8和GB18030。 并可能在注释中导致一些错误。 文件模型包含一些训练有素的模型,可以直接使用。 您还可以通过运行BuildTree.java,TestBP.java和TestLibs
1
决策树又称为判定树,是运用于分类的一种树结构,其中的每个内部节点代表对某一属性的一次测试,每条边代表一个测试结果,叶节点代表某个类或类的分布
2021-10-23 20:04:39 2.18MB Decision Tree ppt
1
PredictionIO 模板:具有特征重要性的决策树 概述 引擎模板是引擎的几乎完整的实现。 在这个引擎模板中,我们默认集成了 Apache Spark MLlib 的决策树算法。 此回归引擎模板的默认用例是预测的价格。 您可以轻松自定义它以适应您的特定用例和需求。 我们将向您展示如何基于此模板为生产使用创建自己的回归引擎。 用法 与码头工人: 开始使用 predictio 的最佳方法是使用 docker。 从我们的形象 docker run -ti --dns=8.8.8.8 -p 9000:9000 -v /pathTo/template-decision-tree-feature-importance:/MyRegression ants/predictionio:v0.9.1 bash 构建Docker映像 按照的步骤: git clone https://github
2021-10-16 16:32:50 508KB Scala
1
ID3和C4.5决策树学习算法的实现 通过使用ID3和C4.5算法实现决策树并生成F1分数。 在UCI机器学习蘑菇数据集上进行测试 入门:将“ Project1_N01412075_Resubmission”文件夹下载到本地驱动器。 This folder has 1) Project1_Mushroom_DT_N01412075.py - A file that contains source code for the implementation. 2) Mushroom folder that has 10 smaller training files(used for cross validation), 1 larger training file (which is a concatenation of all the smaller files) and a final
2021-09-29 11:20:29 311KB Python
1
一个很好用的决策树工具,用于恩熙保护不确定性的决策问题。
2021-09-12 16:42:29 439KB Decision Tree Excel 插件,决策树
1
梯度提升决策树 梯度提升决策树的python实现。该算法的核心部分仅使用numpy实现。 参考 梯度提升算法的详细信息 目录 要求 使用方法(用法) 实际示例(示例) MNIST分类(binary_classification) 通过人工数据进行分类(二进制分类,回归问题) 设置 要求 需要以下库来运行示例 numpy scikit-learn matplotlib pandas scipy 快速开始 与Docker一起运行 这是将docker和docker-compose预先安装在主机上的条件。 首先使用docker-compose构建映像,然后使用守护程序启动容器。 docker-compose build docker-compose up -d 示例命令在容器内运行 # コンテナの内部に潜り込む docker exec -it gbdt-app bash # sample.py
2021-08-16 17:07:19 452KB python mnist gbdt boosted-trees
1
决策树(decision tree)类似于流程图的树结构,由一个根节点,一组内部节点和一组叶节点组成。每个内部节点(包括根节点)表示在一个属性上的测试,每个分枝表示一个测试输出,每个叶节点表示一个类,有时不同的叶节点可以表示相同的类。
2021-08-07 12:06:11 2.24MB 决策树
本代码通过使用python代码实现CART带后剪枝决策树,使用pydotplus库绘制决策树,其中.cvs为数据文件,.png为绘制决策树图形,推荐在anaconda中运行.py 文件
1
hd_knn_tree 使用RStudio对心脏病数据集进行决策树和K最近邻分析。 还要与进行比较,以找出哪种模型可以更好地预测数据集。 使用的技术/框架 Rstudio Rmarkdown 使用的RStudio库 库(caTools) 图书馆(班) 图书馆(kknn) 图书馆(插入符号) 图书馆(ROCR) 库(rpart) 库(rpart.plot) 图书馆(MASS) 图书馆(tidyverse) 图书馆(ggsci) 安装R软件包 rpack <- c("kknn", "caret", "class","caTools", "ROCR", "rpart", "rpart.plot", "MASS", "tidyverse", "ggsci") install.packages(rpack) 数据集 来自UCI的包含76个代表患者状况的属性。 本文的数据集来
2021-03-10 14:09:28 104KB knn decision-tree R
1
高效决策树算法系列笔记
2021-01-28 04:56:58 841KB 高效决策树
1