基于STM32的ADC采样及各式滤波实现,滤波包含:一阶补偿滤波,算术平均滤波,中位值滤波,限幅平均滤波,滑动平均滤波和卡尔曼滤波。滤波可直接调用API函数,方便快捷,便于用于自己的项目中。(积分不够的朋友点波关注,无偿提供)
2024-07-17 08:58:37 13.3MB STM32 滤波算法
1
在本项目中,我们探索了如何使用数字模拟转换器(DAC)AD5669与Arduino集成,以生成模拟脉冲。这个应用广泛且适用于多种情境,如LED控制、停车辅助系统、温度监测等,这些都涉及到从数字信号到模拟信号的转化。 AD5669是一款高精度、低功耗的四通道DAC,它能够提供高达16位的分辨率。这款芯片具有内部电压基准源,可以输出从0V到Vref的连续模拟电压,其中Vref为外部可配置的参考电压。通过SPI或I²C接口,AD5669能与微控制器如Arduino进行通信,实现数字信号到模拟信号的转换。 在项目中,`ad5669_arduino.c`文件是为Arduino编写的驱动程序,用于与AD5669交互。该驱动程序实现了初始化、设置参考电压、写入数据到DAC通道等功能,使得Arduino能方便地控制AD5669的输出。在编写这类驱动程序时,需确保对SPI或I²C通信协议有深入理解,并熟悉目标硬件的指令集。 `send-analog-pulse-using-dac-ad5669-with-arduino-05c12b.pdf`文档很可能是项目指南,详细阐述了如何配置和使用AD5669,以及如何在Arduino环境中编写代码来实现模拟脉冲的发送。文档可能包含了硬件连接图、代码示例以及故障排查步骤,对于初学者来说是非常宝贵的资源。 在实际应用中,比如LED控制,你可以通过调整AD5669的输出电压来改变LED的亮度。而在停车辅助系统中,AD5669可以生成模拟距离信号,这些信号经过处理后可以驱动超声波传感器或雷达模块,从而测量车辆与障碍物的距离。至于温度监测,AD5669可以与热电偶或热敏电阻等温度传感器配合,将温度转换成电压信号,然后通过ADC读取并显示在显示器上。 标签中的"adc"指的是模拟数字转换器,通常用于将模拟信号转换为数字信号,以便微处理器处理。在本项目中,虽然主要讨论的是DAC,但理解ADC的工作原理也是很重要的,因为它们经常一起使用,完成信号的双向转换。 总结起来,这个项目提供了一个实用的平台,展示了如何使用Arduino和AD5669 DAC生成模拟脉冲,适用于多个工程领域。通过掌握这一技术,开发者可以构建出更复杂的嵌入式系统,如智能传感器节点或精密控制设备。对于想要提升自己在数字信号处理和嵌入式系统设计方面技能的爱好者和工程师来说,这是一个非常有价值的实践项目。
2024-07-14 22:56:48 283KB adc parking robotics temperature
1
STM32F103使用定时器触发ADC采集,使用LL库,注释详细,便于移植使用
2024-07-02 14:54:19 15.29MB stm32 ADC
1
ADC(Analog-to-Digital Converter,模数转换器)是电子技术中的一种重要器件,它能够将连续的模拟信号转换为离散的数字信号,从而让数字系统能够处理模拟信号。在嵌入式系统和微控制器应用中,ADC通常用于采集环境传感器数据,如温度、压力、声音等。本篇将围绕“ADC程序 硬件触发ADC程序”这一主题,详细介绍ADC的工作原理、硬件触发机制以及如何编写相关程序。 **ADC工作原理** ADC的核心工作流程包括采样、保持、量化和编码四个步骤。首先,采样阶段会捕捉模拟信号的一个瞬时值;接着,在保持阶段,这个值会被保留,以便后续处理;然后,量化将模拟值转换为离散的数字等级;最后,编码阶段将量化结果转换为二进制数字输出。 **硬件触发机制** 硬件触发是指ADC的转换过程由系统中的特定硬件事件启动,例如某个引脚的电平变化、定时器溢出或者其他外设的中断。这种触发方式可以确保在精确的时间点进行转换,以减少因软件延迟而引入的误差。硬件触发ADC的优点在于提高了系统的实时性和响应速度。 **ADC编程** 编写ADC程序主要包括以下几个关键步骤: 1. **初始化配置**:设置ADC的工作模式,如采样率、分辨率、参考电压等,并选择硬件触发源。这通常通过配置微控制器的寄存器来完成。 2. **开启ADC**:启动ADC转换前,需要先启用ADC模块,使其进入待机状态。 3. **设置触发源**:根据需求选择合适的触发源,如外部引脚中断或定时器中断。在微控制器的配置代码中,指定触发事件和相应的中断服务程序。 4. **处理中断**:当硬件触发事件发生并启动ADC转换后,会在完成转换后产生一个中断。在中断服务程序中,读取ADC的转换结果,并进行必要的数据处理。 5. **数据读取**:读取ADC的转换结果,通常是从特定的寄存器中获取。这些数值可能需要进一步处理,比如校准、平均或者与阈值比较。 6. **关闭ADC**:如果不再需要ADC,记得关闭它以节省资源。 **示例程序片段** 以下是一个简化的ADC程序示例,展示了如何在MCU上配置和使用硬件触发的ADC: ```c #include "adc.h" // 假设已提供ADC相关的库函数 void init_ADC(void) { ADC_InitTypeDef ADC_InitStruct; RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); // 启用ADC1时钟 ADC_InitStruct.ADC_Mode = ADC_Mode_Independent; // 单独工作模式 ADC_InitStruct.ADC_Resolution = ADC_Resolution_12b; // 12位分辨率 ADC_InitStruct.ADC_ScanConvMode = DISABLE; // 不使用扫描模式 ADC_InitStruct.ADC_ContinuousConvMode = DISABLE; // 单次转换模式 ADC_InitStruct.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; // 使用内部触发 ADC_InitStruct.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_TRGO; // 使用定时器1的TRGO作为触发源 ADC_Init(ADC1, &ADC_InitStruct); // 初始化ADC1 ADC_Cmd(ADC1, ENABLE); // 开启ADC1 } void ADC_IRQHandler(void) { // ADC中断服务程序 if (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC)) { // 检查转换结束标志 uint16_t adc_value = ADC_GetConversionValue(ADC1); // 读取转换结果 // ... 进行数据处理 ... ADC_ClearFlag(ADC1, ADC_FLAG_EOC); // 清除转换结束标志 } } int main(void) { init_ADC(); // 初始化ADC TIM_Cmd(TIM1, ENABLE); // 启用定时器1 EnableInterrupts(); // 开启全局中断 while (1) { // ... 主循环 ... } } ``` 以上就是关于“ADC程序 硬件触发ADC程序”的核心知识点,包括ADC的工作原理、硬件触发机制以及编程实现。实际应用中,开发者还需要考虑噪声抑制、精度优化、多通道转换等问题,以提高系统的性能和可靠性。
2024-07-02 10:43:41 297KB ADC程序
1
ADS8688资料。包含商家给的,和我自己用cubemx实现的版本。 配套博客在这里:https://blog.csdn.net/qq_34022877/article/details/119618586。 零积分免费下载。
2024-07-01 17:39:01 17.48MB ADC ADS8688 cubemx
1
在Xilinx的FPGA设计中,特别是在7系列的System-on-Chip (SoC)解决方案,如Zynq系列,DMA(Direct Memory Access)扮演着关键角色。DMA是一种允许设备独立于CPU直接与内存进行数据传输的技术,提高了系统性能并降低了处理器的负载。本主题将深入探讨Xilinx中的几种DMA引擎,包括VDMA、CDMA和ADMA,并结合其驱动代码进行解析。 1. VDMA (Video DMA):视频DMA主要用于高清视频流处理,提供高效的数据传输能力,以满足实时视频应用的需求。VDMA支持连续帧缓冲区的管理和同步机制,确保视频数据在传输过程中的连续性和无损性。驱动代码会包含配置VDMA通道、设置传输参数(如帧大小、帧率)、启动和停止传输以及错误处理等功能。 2. CDMA (Central DMA):中央DMA是Zynq SoC的AXI4-DMA子系统的一部分,用于通用数据传输任务。CDMA支持单向和双向传输,可以处理不同宽度的数据。驱动代码需要管理CDMA的请求、响应和中断处理,以及确保数据的正确性和完整性。 3. ADMA (Advanced DMA):ADMA是更灵活的DMA引擎,通常用于更复杂的数据传输场景,如网络和存储应用。它支持动态配置和多通道操作,可以处理多种数据包格式。ADMA驱动代码需要实现通道分配、上下文切换、错误处理以及与硬件接口的适配。 驱动代码的编写涉及以下关键部分: - 初始化:设置DMA控制器的基本配置,如地址映射、中断处理和通道配置。 - 数据传输配置:设置源和目标地址、传输长度、数据宽度等参数。 - 启动和停止传输:通过写入特定寄存器或调用API来启动和停止DMA传输。 - 中断处理:处理DMA完成、错误或其他类型的中断,确保数据传输的正确性和及时性。 - 错误处理:检测和恢复传输错误,如溢出、地址对齐错误等。 - 内存管理:管理缓冲区分配和释放,确保数据一致性。 在实际应用中,开发者还需要考虑与其他系统组件(如处理器核、外设、存储器)的协同工作,以及如何优化数据传输效率,如批量传输和异步操作。理解这些驱动代码有助于开发者高效地利用Xilinx SoC的DMA资源,实现高性能的嵌入式系统设计。通过深入学习和实践,开发者可以构建出更可靠、更高效的DMA驱动程序,从而充分发挥硬件的潜力。
2024-07-01 11:19:07 136KB DMA VDMA 驱动代码
1
该代码同时支持stm32 f1 系列 的 三路USART 通道, 全部采用 DMA 自动收发数据, 通过中断返回判断数据是否收发完成。 代码已经测试通过可以,可以直接使用。在移植使用时需要注意,IO口 / 波特率 等信息
2024-06-25 13:36:42 4KB STM32 USART DMA
1
ADC—多通道(DMA读取)
2024-06-21 15:47:39 5.98MB ADC DMA STM32
1
STM32F103C8T6-DMA数据转运
2024-06-21 15:40:00 314KB stm32
1
ADC上位机,使用stm32测量电压值,并在上位机上面显示
2024-06-20 18:46:39 8.34MB STM32 C#上位机
1