内容概要:本文介绍了一种在MATLAB环境下实现的改进型RRT路径规划算法,结合概率采样、贪心扩展策略与三阶B样条平滑优化技术,显著提升路径规划效率与平滑性。算法支持二维/三维环境、自定义地图、起点、终点及复杂障碍物(如多边形与圆形),并通过biased sampling加快收敛速度,利用贪心延伸提升空旷区域探索效率,最后通过B样条实现C2连续的平滑路径输出。实测表明该方法在复杂环境中具备更强的鲁棒性与实时性。 适合人群:具备一定MATLAB编程基础的机器人算法工程师、自动驾驶开发者、智能系统研究人员及高校研究生。 使用场景及目标:适用于移动机器人、无人车、无人机等领域的路径规划仿真与算法验证;目标是提升传统RRT算法的收敛速度、路径质量与环境适应能力。 阅读建议:建议结合代码实践,重点关注采样策略、贪心扩展与B样条平滑模块的设计逻辑,并根据实际地图尺寸调整关键参数以获得最优性能。
2025-11-23 08:41:50 332KB 路径规划 贪心算法
1
在现代工业自动化领域,机器人视觉技术的应用越来越广泛。机器人的视觉系统可以帮助机器人感知周围环境,理解任务目标,从而做出相应的动作。UR5作为一款轻量级的协作机器人,以其灵活性和易用性成为科研和工业应用中的常见选择。在进行机器人视觉研究时,Gazebo作为一款流行的机器人仿真平台,提供了一个模拟真实世界环境的平台,便于进行各种视觉算法的测试和优化。 SIFT(尺度不变特征变换)算法是一种局部特征提取方法,它能在图像中提取出具有尺度不变性的关键点,并对这些关键点进行描述,从而实现对物体的快速、准确识别,尤其在物体发生旋转、缩放或亮度变化时仍然具有良好的稳定性和区分度。在机器人视觉系统中,SIFT算法常常被用于物体位姿的估计,这对于机器人准确抓取目标物体至关重要。 在本文档“机器人视觉_UR5_Gazebo_抓取_SIFT位姿估计Ma_1743961359.zip”中,可以推断其主要内容将涉及如何将UR5机器人的抓取任务与SIFT位姿估计算法结合,并在Gazebo仿真环境中进行测试和验证。通过在Gazebo中模拟UR5机器人视觉系统的操作,研究者能够评估SIFT算法在真实世界环境下的性能表现,并对算法进行调整以提高其准确性和效率。 文档的具体内容可能会包括以下几个方面: 1. UR5机器人介绍:UR5是UR家族中的一个成员,以其6自由度的设计,能够执行复杂的空间运动任务。在文档中,可能会详细描述UR5的结构特点、运动范围、控制方式等基本信息。 2. Gazebo仿真环境搭建:文档会介绍如何在Gazebo中搭建UR5机器人模型,并设置仿真场景,包括机器人的安装位置、仿真环境的光照和纹理等因素。 3. 机器人视觉系统构建:这部分内容将涉及到视觉系统的设计,包括摄像头的选择、安装位置、分辨率等参数的设置。 4. SIFT位姿估计算法实现:文档会详细介绍SIFT算法的原理以及在UR5机器人中的实现方式,包括关键点检测、特征描述子提取、关键点匹配等步骤。 5. 抓取任务设计:文档会探讨如何利用SIFT算法进行物体位姿估计,并基于此估计指导UR5机器人的抓取动作。这可能包括抓取点的选择、抓取路径规划以及抓取动作的实现。 6. 测试与评估:文档可能会展示一系列的测试实验,包括在不同条件下的抓取成功率、算法的稳定性和效率等评估指标。 通过这些内容的深入研究,可以帮助开发者更好地理解UR5机器人在Gazebo仿真环境下的视觉抓取能力,以及如何通过SIFT算法提高抓取的准确性和效率。这不仅对学术研究具有重要意义,也为工业领域提供了实用的技术参考和解决方案。
2025-11-21 16:25:39 56.17MB
1
西门子plc博图与优傲UR机器人进行Profinet通讯,s7-1200 1500 与UR机器人通讯,实际应用案例使用中,可提供GSD配置文件,设置说明书,和博图plc程序,目前版本为v15或以上,程序只提供配置好的内容配置 西门子PLC(可编程逻辑控制器)是工业自动化领域中的重要设备,其稳定性和高效性受到广泛认可。优傲(Universal Robots,简称UR)机器人是工业机器人领域的一个知名品牌,以其灵活性和易用性著称。Profinet是一种基于工业以太网的通讯协议,适用于自动化技术和工业通讯领域。西门子PLC与UR机器人之间的Profinet通讯是现代工业自动控制系统中的一种实际应用场景。 在这一场景中,西门子S7-1200和S7-1500系列PLC作为控制核心,通过Profinet协议与UR机器人实现数据交换和指令传递。这一通讯方式使得机器人可以无缝集成进生产线,实现更高级别的自动化和智能化生产。具体的应用案例中,PLC可以发送启动、停止、速度调整等控制信号给UR机器人,而机器人也可以将自身的运行状态信息反馈给PLC,双方实现双向通讯。 为了实现上述通讯,需要进行一系列的配置工作。必须使用西门子提供的GSD(General Station Description)配置文件,它包含了Profinet设备的所有通讯参数。有了GSD文件,工程师可以在TIA Portal(Totally Integrated Automation Portal)软件中进行设备的配置和调试工作。在实际应用案例中,会涉及到西门子博图(博途)的编程环境,这里编写PLC程序来完成具体的控制逻辑。 同时,工程师需要根据实际应用需求编写相应的设置说明书,明确通讯参数设置、信号映射和接口定义等关键步骤,确保系统配置正确无误。除此之外,为了便于用户理解和操作,实际应用案例中通常会提供一套完整的配置好内容的PLC程序,以供参考和直接使用。 在文档资料方面,用户可以获取到的包括了实际应用案例的分析文档、通讯协议的介绍文档以及通讯实施的引言性文件。这些文档往往涉及了从理论到实践的全面介绍,包括了项目的背景、目的、实施过程和最终效果的评估。此外,还会有若干张图片文件,它们可能是系统的布局图、线路图或是通讯过程中的关键截图,这些图片有助于用户更直观地理解整个通讯系统的设置和操作过程。 由于西门子PLC和UR机器人在工业自动化领域的重要性,这种通讯案例的实施对于提升自动化生产线的效率和灵活性具有重要意义。它不仅减少了人力成本,还提高了生产过程的精准度和可靠性,是实现工业4.0和智能制造的关键技术之一。 西门子PLC博图与优傲UR机器人的Profinet通讯实现,是工业自动化领域的一个实际应用典范,它体现了智能化、网络化在生产中的应用潜力,对于推动传统制造业向智能制造转型具有非常重要的实际意义。
2025-11-20 15:00:36 6.28MB
1
"仿生蝴蝶机器人研究:质量移动机构的飞行特性与气动参数测量方法" 仿生蝴蝶机器人的发展为研究飞行生物的飞行机理提供了一种新的解决方案。本研究设计了一个仿生机器人蝴蝶转向通过质量转移机构命名为USTButterfly-II,并研究其飞行特性,使用光学跟踪设备。一个平面四-采用连杆机构驱动所设计的仿蝴蝶型人工翅膀拍动。提出了一种基于质量块移动机构的无尾转向控制方法。利用多摄像机运动捕捉系统测量了USTButterfly-Ⅱ的机翼运动学和运动轨迹,并确定了其瞬时净升力系数和推力系数等难以测量的扑翼气动参数。 本研究的主要贡献在于:(1)设计了一种新的仿生蝴蝶机器人USTButterfly-II,采用电机和平面四连杆机构驱动,进行周期性的扑翼运动,扑翼振幅超过80赫兹,扑翼频率为5赫兹,接近生物蝴蝶的扑翼特性。(2)提出了一种基于质量块移动机构的无尾转向控制方法,实现了机器蝴蝶的自由控制飞行能力。(3)利用多摄像机运动捕捉系统测量了USTButterfly-Ⅱ的机翼运动学和运动轨迹,并确定了其瞬时净升力系数和推力系数等难以测量的扑翼气动参数。 本研究的结果为机器蝴蝶的设计和改进提供了有效的数据支持,并为生物蝴蝶飞行机制的研究提供了一个新的实验框架。 知识点: 1. 仿生蝴蝶机器人的概念和特点 仿生蝴蝶机器人是一种新的飞行机器人,模拟生物蝴蝶的飞行机理,具有自适应飞行能力和高速飞行能力。 2. 仿生蝴蝶机器人的设计和制造 仿生蝴蝶机器人的设计和制造需要考虑到机器人的结构、材料、驱动系统和控制系统等方面。 3. 质量移动机构的概念和应用 质量移动机构是一种新的机器人机构,用于实现机器蝴蝶的自由控制飞行能力。 4. 无尾转向控制方法 无尾转向控制方法是指通过调整质量移位机构的位置来完成机器蝴蝶的转向控制。 5. 多摄像机运动捕捉系统的应用 多摄像机运动捕捉系统是一种新的测量方法,用于测量机器蝴蝶的机翼运动学和运动轨迹。 6. 扑翼气动参数的测量 扑翼气动参数是指机器蝴蝶飞行中的一些难以测量的气动参数,例如瞬时净升力系数和推力系数等。 7. 仿生蝴蝶机器人的应用前景 仿生蝴蝶机器人的应用前景广阔,例如在搜索救援、环境监测、农业监测等领域都有着广泛的应用前景。
2025-11-19 16:00:43 1.67MB
1
本书深入探讨了康复机器人在步态训练中的应用,涵盖外骨骼系统、末端执行器设备及移动支持系统。重点解析了机器人辅助训练如何通过精准控制策略促进中风与脊髓损伤患者的神经可塑性与功能恢复。书中对比了传统疗法与机器人干预的临床效果,指出在急性期及重度功能障碍患者中,机器人训练更具潜力。同时强调‘按需辅助’与患者协同控制的重要性,以避免过度依赖导致的努力下降。结合虚拟现实与脑机接口等新兴技术,展示了个性化、智能化康复的未来方向。适合从事康复工程、神经科学与机器人研发的专业人员阅读与参考。
2025-11-19 15:18:51 2.77MB 康复机器人 步态训练 神经可塑性
1
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 想轻松敲开编程大门吗?Python 就是你的不二之选!它作为当今最热门的编程语言,以简洁优雅的语法和强大的功能,深受全球开发者喜爱。该文档为你开启一段精彩的 Python 学习之旅。从基础语法的细致讲解,到实用项目的实战演练,逐步提升你的编程能力。无论是数据科学领域的数据分析与可视化,还是 Web 开发中的网站搭建,Python 都能游刃有余。无论你是编程小白,还是想进阶的老手,这篇博文都能让你收获满满,快一起踏上 Python 编程的奇妙之旅!
2025-11-18 16:16:27 4.74MB python
1
本文详细介绍了连续体机器人的正逆向运动学模型,重点讲解了DH参数法和雅可比矩阵的应用。首先概述了传统机器人中使用的DH参数法和雅可比矩阵,然后详细阐述了如何利用DH参数法解决机器人的正向运动学问题,以及如何利用雅可比矩阵的伪逆迭代解决逆向运动学问题。文章还讨论了连续体机器人的建模思路,指出虽然连续体机器人没有固定关节,但可以通过拟合虚拟关节来应用类似的建模方法。最后,文章提供了具体的DH参数矩阵和雅可比矩阵的构建方法,并预告了下一章节将应用DH参数法对连续体机器人的正向运动进行建模。 连续体机器人运动学模型的构建是机器人学领域内的一个研究热点,尤其在处理无固定关节的机器人结构时显得尤为重要。运动学模型主要涉及机器人的运动描述和分析,包括正向运动学和逆向运动学两个方面。正向运动学指的是在已知机器人各个关节变量的情况下,计算机器人末端执行器的位置和姿态;逆向运动学则是在已知机器人末端执行器位置和姿态的前提下,求解各个关节变量的值。 DH参数法,即Denavit-Hartenberg参数法,是一种广泛应用于机器人运动学建模的方法。它通过引入四个参数——连杆偏距、连杆扭角、连杆长度和关节转角——来描述相邻两个关节轴之间的关系。对于连续体机器人而言,尽管其结构柔性且没有传统意义上的固定关节,但是通过设定虚拟关节,可以将连续体离散化处理,使得DH参数法同样适用。 雅可比矩阵是运动学中描述机器人末端速度和关节速度之间关系的矩阵,它在连续体机器人的逆向运动学问题中扮演着至关重要的角色。逆向运动学的求解通常需要通过迭代算法来实现,雅可比矩阵的伪逆提供了一种有效的解决方案,它能够提供关节速度与末端执行器速度之间的映射关系。 连续体机器人的建模过程比较复杂,因为其结构的连续性给传统建模方法带来了挑战。文章指出,连续体机器人建模的关键在于如何合理地定义虚拟关节以及如何通过DH参数法来表示这些虚拟关节之间的相对运动关系。 在文章的作者介绍了如何构建具体的DH参数矩阵和雅可比矩阵。通过设定连续体机器人各段的虚拟关节,可以使用DH参数法来构建出一个离散化的模型。接着,根据这些虚拟关节和它们的运动关系,可以推导出雅可比矩阵。雅可比矩阵的构建是理解机器人运动学和进行运动控制的基础。文章还预告了下一章节将介绍如何利用DH参数法对连续体机器人的正向运动进行建模。 文章的讨论并不停留在理论层面,它还提供了实际构建这些模型的具体方法,这对于机器人工程师在设计和控制连续体机器人时具有重要的参考价值。通过这些模型,工程师能够更加精确地控制机器人的运动,实现复杂的任务。 连续体机器人的运动学模型构建是一个将理论与实践结合的过程,其中DH参数法和雅可比矩阵是解决连续体机器人正逆向运动学问题的关键工具。通过合理的建模方法和算法迭代,连续体机器人可以在无固定关节的条件下实现精准的运动控制。
1
内容概要:本文系统讲解了LangChain的核心原理与Prompt Engineering实战应用,重点介绍如何从零构建可落地的对话式知识库。通过六大核心抽象(Schema、Model、PromptTemplate、Chain、Memory、Agent)实现模块化编排,结合RAG技术提升问答准确率,并以PDF文档问答为例展示了完整的技术闭环:文档加载、文本分块、向量化存储、检索增强生成与语义缓存优化。代码实例详尽,涵盖性能调优与压测验证,体现了高可用性和工程落地价值。; 适合人群:具备Python基础和NLP背景,从事AI应用开发、智能客服或知识管理系统研发的工程师,尤其是工作1-3年希望深入大模型应用层的技术人员; 使用场景及目标:①构建企业内部文档智能问答系统;②优化检索命中率与响应延迟;③降低大模型调用成本并控制幻觉输出;④实现可追溯、可缓存、支持多轮对话的企业级RAG应用; 阅读建议:建议结合代码环境动手实践,重点关注分块策略、语义缓存、自定义Prompt设计与性能压测环节,理解LangChain如何通过链式组合提升系统鲁棒性,并关注其在长上下文、Agent化与私有化部署方面的未来趋势。
2025-11-17 23:21:02 22KB Prompt Engineering
1
基于MATLAB仿真的八索并联绳索机器人运动学及动力学模型:点滑轮摆动与俯仰运动及力分配策略研究,八索并联绳索机器人仿真matlab模型,带出绳点滑轮摆动与俯仰,是运动学模型 另外还有正运动学模型,力分配以及动力学模型,可以改 ,核心关键词:八索并联绳索机器人仿真; MATLAB模型; 绳点滑轮摆动; 俯仰运动学模型; 正运动学模型; 力分配; 动力学模型; 可改。,MATLAB仿真模型:八索并联机器人运动学与动力学分析 MATLAB仿真技术在机器人领域发挥着重要作用,尤其是在设计和分析复杂的并联机器人系统时。本文介绍了一种基于MATLAB仿真平台的八索并联绳索机器人模型研究,涉及了运动学与动力学的深入分析。八索并联机器人是一种采用八根绳索进行驱动的并联机构,它具有较高的灵活性和可控性,适用于各种复杂任务的执行,如载荷运输、精密定位等。在本研究中,作者构建了详细的运动学模型和动力学模型,这些模型能够准确模拟机器人在执行任务时的状态变化。 研究内容主要包括点滑轮摆动和俯仰运动两个方面。点滑轮摆动是指绳索与滑轮之间的相对运动,这种运动对机器人的运动精度和稳定性有着直接的影响。俯仰运动则是指机器人在垂直方向上的旋转运动,这对于机器人的定位精度和操作范围至关重要。在这些模型的基础上,研究者还探讨了力分配策略,即如何根据机器人各部件的受力情况合理分配拉力,以保证机器人的高效和稳定运行。 正运动学模型是研究机器人各部件的位置和姿态如何随输入参数变化的模型,它在机器人路径规划和运动控制中发挥着核心作用。通过对正运动学模型的分析,可以确定在给定各个驱动器输入时,机器人末端执行器的位置和姿态,这为精确控制机器人提供了可能。同时,文章还强调了动力学模型的重要性,它是研究机器人各部件受到的力和力矩如何随时间变化的模型,对于预测机器人在执行任务中的动态行为和进行动力学优化至关重要。 研究者还指出,所提出的MATLAB仿真模型具有高度的可改性。这意味着用户可以根据自身需求和实验条件对模型进行调整,从而更好地适应特定应用场景。例如,可以通过修改参数来模拟不同重量的载荷、不同绳索的长度和刚度,甚至改变机器人的结构布局等。这种灵活性对于机器人的设计、测试和优化过程非常有帮助。 八索并联绳索机器人及其MATLAB仿真模型的研究,不仅展示了机器人技术在动态模拟和控制领域的应用潜力,还为机器人设计和应用提供了宝贵的理论和实践指导。通过对运动学和动力学模型的深入研究,可以有效提高机器人的性能,使其在工业生产和科学研究中发挥更大的作用。
2025-11-17 22:14:25 1.46MB kind
1
本文详细介绍了基于GPT2模型的全量微调项目,旨在搭建一个医疗问诊机器人。项目从全量微调的简介开始,逐步讲解了数据与模型准备、数据集类及其导入器、模型配置与推理、模型训练等关键步骤。全量微调(Full Fine-tuning)是对整个预训练模型的所有参数进行微调,常用于文本生成任务。项目使用了医疗问诊数据进行微调,数据包括medical_train.txt和medical_valid.txt两个文件,分别包含9万多行和1200多行数据。硬件配置使用了RTX 3080显卡,显存为12G。文章还详细介绍了数据预处理、模型训练中的损失函数和精度计算,以及训练后的推理过程。最终的项目结构包括多个epoch的模型保存和推理测试,展示了模型在医疗问诊中的初步表现。 在人工智能领域,大型语言模型如GPT2在自然语言处理任务中表现出色。本项目聚焦于利用GPT2模型的先进能力,构建一个专门的医疗问诊机器人,这不仅是一项技术上的挑战,也对提升医疗服务质量、减轻医务人员的工作压力具有重要意义。项目的核心是通过全量微调的方式,使得GPT2模型能够更好地理解和生成与医疗问诊相关的文本,从而实现在模拟医疗问诊场景下的有效沟通。 为了实现这一目标,项目团队首先对全量微调的概念进行了阐述,并解释了为何选择这种方法,尤其是在面对需要精细控制语言生成细节的医疗问诊任务时。全量微调方法允许对预训练模型的每个参数进行微调,使其更贴合特定的文本生成任务,这在医疗问诊这种专业性强、对准确度要求极高的场景下尤为关键。 为了训练模型,项目团队精心准备了医疗问诊数据集,这些数据包括了真实场景下的问诊对话记录。数据集通过两个关键文件提供,分别是包含大量问诊记录的medical_train.txt和包含验证数据的medical_valid.txt。这些数据文件的规模和质量对于最终模型的性能有着直接的影响。 在硬件配置方面,项目的训练工作是在配备了RTX 3080显卡的计算平台上进行的。该显卡具备12GB显存,为处理大规模数据集和运行复杂的深度学习模型提供了必要的硬件支持。 数据预处理是机器学习项目中不可或缺的一个环节,本项目也不例外。数据预处理包括清洗、标准化等步骤,确保输入模型的数据质量,从而提高训练效果。项目的预处理步骤包括对原始医疗问诊记录的格式化和标记化,以便模型能够正确理解和处理数据。 模型配置与推理部分涉及了模型的具体搭建和参数设置。项目团队详细介绍了如何构建适合医疗问诊任务的模型架构,以及如何配置训练过程中的各种参数。模型配置的好坏直接关系到训练效果和最终模型的性能,因此,这部分内容是项目成功的关键。 训练过程采用了多种损失函数和精度计算方法,用于评估模型在训练集和验证集上的表现。损失函数的选择和精度计算方法反映了项目团队对训练动态和模型性能的深入理解。通过不断调整模型参数,使得模型在训练集上的损失逐渐降低,并在验证集上展现出良好的泛化能力。 最终的模型结构包括了多个epoch的模型保存和推理测试。Epoch是训练过程中模型完整遍历训练数据集的次数。多次迭代训练有助于模型捕捉到数据中的深层次特征,并提升其生成文本的质量。推理测试部分则是对模型在实际应用中的能力进行评估,项目团队通过设置特定的测试用例,检验了模型在模拟医疗问诊场景下的表现。 整个项目对于模型在医疗问诊中的初步表现进行了展示,这不仅仅是技术成果的展示,更体现了人工智能技术在特定领域的应用潜力。通过不断优化模型性能,未来这类医疗问诊机器人有望在实际医疗场景中扮演重要角色,为患者提供初步咨询,减轻医疗人员的工作压力,甚至在一定程度上辅助医生进行诊断。
2025-11-16 22:02:06 24.21MB 人工智能
1