审查意见通知书答复方法及技巧 第一节 实质审查程序及原则 第二节 申请文件的修改 第三节 审查意见的理解 第四节 审查意见答复原则与策略 意见陈述书 是否修改? 如何阐述理由? 结尾
2025-11-27 08:38:42 3.7MB
1
内容概要:本文详细介绍了使用CST Microwave Studio进行三维超材料能带计算的方法和技巧。首先强调了正确的初始设置,如选择Eigenmode求解器和设置周期性边界条件。接着讲解了建模过程中的一些实用技巧,如使用VBA脚本批量生成复杂晶格结构。随后讨论了能带扫描的核心步骤,即参数化k矢量并通过三重循环遍历布里渊区路径。还提到了后处理阶段的重要注意事项,如模式追踪和数据可视化。最后分享了一些提高效率和准确性的小技巧,如优化网格划分和参数校验。 适合人群:从事超材料研究的科研人员和技术爱好者,尤其是有一定CST使用基础的人。 使用场景及目标:帮助研究人员掌握三维超材料能带计算的具体流程,提高计算效率和结果准确性,适用于学术研究和工程应用。 其他说明:文中不仅提供了详细的理论指导,还包括大量实用的代码示例,便于读者理解和实践。
2025-11-25 22:08:05 147KB
1
一生中有幸成为新发现或新思想的一部分的机会屈指可数。某些思想或革新会极大地改变我们所生活的 世界。想一想如果生物科学家完成了整个人类基因的绘制 — 确定了DNA结构的最后一个基因,美国国 立卫生研究院实验室会作何感想。或者当Bardeen、Brattain和Shockley演示第一个引发通信变革的晶 体管时,贝尔实验室会有什么反应。 在过去的50年里,科学家和工程师取得了数量惊人的科技突破。他们提出的思想改变了我们的思维方式 和几乎每一件事情的做事方法。例如,连接研发中心计算机的愿望演变成了今天的互联网 - 对于这项 创新,很多人认为这是我们一生中所看到的最重要的、改变了商业、社会和政治状况的工具。 如今,我们能够再一次见证并分享这些罕见的技术发现。电子行业正在经历一场根本性的转变 - 从并 行I/O电路到串行I/O连接功能解决方案的转变。作为一种能够降低系统成本、简化系统设计并提供所需 的扩展性,从而满足新的带宽需求的手段,这种转变受到了各行业企业的推动。 Xilinx坚定地相信串行连接功能解决方案最终将应用到可能的电子产品的方方面面。简单地举几个例子, 这种解决方案可用于芯片到芯片
2025-11-25 08:56:51 96.59MB fpga开发 fpga
1
开关电源EMI电路设计是电源设计中的一个重要环节,主要目的是减少电源工作时产生的电磁干扰(EMI),保证电源本身的正常工作以及不对其他设备产生干扰。本文将详细解读开关电源EMI电路设计中的技巧和方法,以及设计中需要注意的事项。 了解EMI的产生原理至关重要。开关电源工作时,由于高速的开关动作,会产生大量的电磁干扰。这些干扰可以分为差模干扰和共模干扰两大类。差模干扰主要是由电源的正负线路之间的电压波动产生的,而共模干扰则是由于线路和地之间的电压波动导致的。 在设计EMI电路时,需要考虑不同的频率范围,采取不同的滤波措施。对于1MHz以下的低频干扰,主要以差模干扰为主,可以通过增大X电容的方式来抑制。而当干扰频率在1MHz到5MHz之间时,干扰类型转为差模共模混合,此时需要在输入端并联一系列X电容,并且要分析干扰源并针对性解决。5MHz以上的高频干扰主要是共模干扰,需要采用专门针对共模干扰的抑制方法。 针对高频共模干扰,比如10MHz以上的干扰,可以采用磁环来减小干扰。具体方法是在地线上绕磁环两圈,可以有效衰减高频干扰。在25MHz到30MHz的频率范围内,可以通过增加对地Y电容,或在变压器外包裹铜皮等措施来减小干扰。在更高频段,如30MHz到50MHz,干扰通常是由于MOS管的高速开关动作造成的,这时可以通过增加MOS管驱动电阻或使用RCD缓冲电路来抑制干扰。 在100MHz到200MHz的频率范围内,干扰主要由输出整流管的反向恢复电流引起。可以通过在整流管上串磁珠来减小干扰。针对PFC MOSFET和PFC二极管的干扰,使用磁珠也是非常有效的办法,尽管在垂直方向上可能效果不佳。此外,也可以考虑在MOSFET和二极管上增加吸收回路来抑制干扰,但可能会影响效率。 除了上述频率区分的策略外,设计开关电源时防止EMI的措施还包括: 1. 减小噪声电路节点的PCB铜箔面积,例如开关管的漏极和集电极,以及初次级绕组节点等。 2. 使输入输出端远离噪声元件,例如变压器线包、磁芯以及开关管的散热片等。 3. 确保噪声元件远离外壳边缘,因为外壳边缘容易接触到外部接地线。 4. 如果没有使用电场屏蔽的变压器,应保持屏蔽体和散热片与变压器保持距离。 5. 减少电流环面积,包括次级整流器、初级开关功率器件、栅极驱动线路以及辅助整流器。 6. 避免将门极驱动返馈环路与初级开关电路或辅助整流电路混在一起。 7. 调整阻尼电阻值以防止振铃声。 8. 防止EMI滤波电感饱和。 9. 使拐弯节点和次级电路元件远离初级电路的屏蔽体或散热片。 10. 保持初级电路摆动节点和元件本体远离屏蔽体或散热片。 11. 将高频输入输出的EMI滤波器靠近输入电缆或连接器端以及输出电线端子。 12. 保持EMI滤波器与PCB板铜箔和元件本体之间一定距离。 13. 在辅助线圈的整流器线路上增加电阻,以及在磁棒线圈上并联阻尼电阻。 14. 在输出RF滤波器两端并联阻尼电阻。 15. 在变压器初级静端和辅助绕组之间放置1nF/500V陶瓷电容器或一串电阻。 16. 在PCB设计时留下放置屏蔽绕组脚位和RC阻尼器位置。 17. 如果空间允许,在开关功率场效应管漏极与门极之间放置小径向引线电容器。 18. 在直流输出端放置小RC阻尼器。 19. 避免将AC插座和初级开关管散热片靠在一起。 通过以上的方法和技巧,可以有效减少开关电源在设计中产生的EMI干扰,保证电源的稳定工作以及对其他设备的电磁兼容性。在实际设计过程中,需要综合考虑各种可能的干扰源和干扰途径,并采取相应的设计策略,以达到最佳的EMI控制效果。
2025-11-24 20:09:31 62KB 开关电源 EMI电路设计 硬件设计
1
开关电源是电子设备中常见的电力转换设备,其电磁干扰(EMI)的控制对于保障系统稳定运行至关重要。EMI干扰源主要来自于开关电源内部的功率开关管、整流二极管、高频变压器等元件,以及外部环境如电网波动、雷击和外界电磁辐射。在开关电源的设计过程中,减少这些干扰源产生的干扰,以及提高设备的电磁兼容性(EMC),是电磁干扰设计的核心任务。 在开关电源的EMI设计中,有以下几个方面需要特别关注: 1. 开关电源的EMI源 - 功率开关管是电场和磁场耦合的主要干扰源,因为其工作在高速开关状态,伴随着快速变化的电压和电流。 - 高频变压器主要由于漏感引起的快速电流变化,造成磁场耦合的干扰。 - 整流二极管的反向恢复特性会产生瞬间高 dv/dt 的电压尖峰,形成电磁干扰。 - PCB作为干扰源的耦合通道,其设计质量直接影响EMI抑制效果。 2. 开关电源EMI传输通道分类 - 传导干扰包括容性耦合、感性耦合和电阻耦合。 - 辐射干扰可以将电路元件假设为天线,通过电偶极子和磁偶极子理论来分析其电磁波的辐射。 3. 开关电源EMI抑制的9大措施 - 减小 dv/dt 和 di/dt 的峰值和斜率来降低干扰。 - 合理应用压敏电阻以降低浪涌电压。 - 使用阻尼网络抑制过冲。 - 采用软恢复特性的二极管减少高频EMI。 - 应用有源功率因数校正和谐波校正技术。 - 采用合理设计的电源线滤波器。 - 合理的接地处理和屏蔽措施。 - 进行合理的PCB设计。 4. 高频变压器漏感的控制 - 选择合适的磁芯材料和匝数来降低漏感。 - 减小绕组间的绝缘层厚度,使用黄金薄膜等材料以提高击穿电压。 - 提高绕组间的耦合度,减少漏感。 5. 高频变压器的屏蔽 - 采用铜箔屏蔽带来减少高频变压器的漏磁场。 - 将屏蔽带接地,形成对漏磁场的短路环以抑制泄漏。 - 为避免高频变压器噪声,需要采取加固措施,如使用环氧树脂粘接磁心、用玻璃珠胶合剂固定磁心等。 开关电源的EMI设计必须综合考虑各种干扰源和传播途径,通过合理设计元件、布局,以及利用滤波、屏蔽、接地等措施,最大程度地降低EMI的影响,从而提高电源系统的稳定性和可靠性。
1
开关电源是现代电子设备中不可或缺的一部分,它负责将交流电压转换为直流电压,并保证电压的稳定性。然而,在开关电源工作过程中,由于高速开关动作以及整流、滤波等环节,会产生电磁干扰(EMI),这些干扰可能会对电子设备的正常工作造成影响。本文将详细分享关于开关电源EMI设计方面的经验,包括EMI干扰源、干扰传输通道、EMI抑制措施以及高频变压器的设计和屏蔽。 开关电源EMI的主要干扰源包括功率开关管、整流二极管和高频变压器。功率开关管在开关动作中产生很大的dv/dt和di/dt,即电压和电流的变化率,这些快速的变化是电磁干扰的主要来源。整流二极管的反向恢复特性也会产生EMI,特别是在高频工作情况下,反向恢复电流的断续会产生很高的电压变化率,从而产生强电磁干扰。高频变压器由于漏感问题,当功率开关管关断时会产生尖峰电压,这也是EMI的一个来源。而PCB设计对于抑制这些干扰源至关重要,因为PCB是干扰信号的耦合通道,其设计的优劣直接影响EMI的抑制效果。 开关电源EMI的传输通道可以分为传导干扰和辐射干扰两种。传导干扰包括容性耦合、感性耦合和电阻耦合。容性耦合通常发生在具有一定电容性的元件之间,感性耦合则是由于互感效应,而电阻耦合则涉及到公共阻抗。辐射干扰则是通过空间传播的电磁波,可以将干扰源的元器件和导线假设为天线,分析其辐射特性。没有屏蔽的情况下,电磁波会通过空气传输,而在有屏蔽的情况下,则需要考虑屏蔽体的缝隙和孔洞,用泄漏场的数学模型进行分析处理。 为了抑制EMI,设计中可以采取九种主要措施:第一,减小dv/dt和di/dt,降低它们的峰值并减缓变化斜率;第二,合理应用压敏电阻来降低浪涌电压;第三,采用阻尼网络抑制过冲;第四,使用具有软恢复特性的二极管,以降低高频段的EMI;第五,采用有源功率因数校正以及其他谐波校正技术;第六,设计合理的电源线滤波器;第七,进行合理的接地处理;第八,采取有效的屏蔽措施;第九,进行合理的PCB设计。通过这些措施,可以有效地减少开关电源对外界和自身产生的电磁干扰。 高频变压器的设计同样对抑制EMI至关重要。控制高频变压器的漏感是解决其EMI问题的首要任务。控制漏感的措施包括选择合适的磁芯以降低漏感,减小绕组间的绝缘层厚度,并且提高绕组之间的耦合度。在高频变压器的屏蔽方面,可以使用铜箔制成的屏蔽带,将其绕在变压器外部并接地,这样可以抑制漏磁场的泄漏。为了防止由于高频变压器磁心相对位移而产生的噪声,可以使用环氧树脂或“玻璃珠”胶合剂对磁心进行加固。 开关电源的设计中需要对EMI问题给予高度重视,通过合理的设计和选择适当的元件,可以有效地抑制EMI。这些知识和经验将有助于设计出既高效又符合EMC标准的开关电源。
2025-11-24 16:55:58 67KB 开关电源 技术应用
1
开关电源是一种常见的电力转换设备,广泛应用于电子设备中。然而,开关电源在工作过程中会产生电磁干扰(EMI),这会影响同一电源系统内其他设备的正常工作,同时也会影响周边的电子设备。因此,对开关电源进行EMI设计至关重要。 开关电源的EMI干扰源主要包括功率开关管、整流二极管、高频变压器等关键元件。这些元件在开关动作时会产生高dv/dt和di/dt,导致电场和磁场耦合,进而产生干扰。功率开关管在On-Off快速循环转换时产生显著的电压和电流变化,是电磁干扰的主要源头。高频变压器由于漏感效应,其快速变化的di/dt也是一个重要的干扰源。整流二极管的反向恢复特性会导致电路中的电感在电流断续点产生高dv/dt,从而产生电磁干扰。PCB作为元器件安装的基础,其布线和布局直接影响EMI干扰的强度和传导路径。 开关电源的EMI传输通道可以分为传导干扰和辐射干扰。传导干扰包括容性耦合、感性耦合和电阻耦合。其中,电阻耦合可以通过公共电源内阻、公共地线阻抗、公共线路阻抗来传导。辐射干扰则是由于开关电源中的元器件和导线可以假设为天线,按电偶极子和磁偶极子理论进行分析。没有屏蔽体时,电磁波通过空气传播;有屏蔽体时,需要考虑屏蔽体的缝隙和孔洞,并采用泄漏场的数学模型进行分析。 为了抑制EMI,可以采取以下措施:(1)减小dv/dt和di/dt,即降低其峰值和减缓变化斜率;(2)合理使用压敏电阻,以降低浪涌电压;(3)利用阻尼网络抑制电压过冲;(4)采用具有软恢复特性的二极管,减少高频段的EMI;(5)采用有源功率因数校正和其他谐波校正技术;(6)设计合理的电源线滤波器;(7)合理进行接地处理;(8)采取有效的屏蔽措施;(9)进行合理的PCB设计。 高频变压器的漏感是导致EMI的一个重要因素,因此需要控制漏感。控制措施包括:(1)选择合适的磁芯以降低漏感;(2)减小绕组间绝缘层厚度;(3)提高绕组间的耦合度。此外,使用屏蔽带屏蔽高频变压器的漏磁场,以抑制漏磁干扰;采用加固措施防止变压器在工作中的位移导致的噪声。 在PCB设计方面,应当注意合理布局,以减少EMI源的影响。布线应尽量短而粗,远离高阻抗区域,减少环路面积,避免高速信号的边沿过于陡峭,以减少高频噪声的产生。同时,通过合理布局和设计,可以减少线路间的串扰和耦合。 值得注意的是,尽管采取了各种EMI抑制措施,但由于电磁环境日益复杂,EMI问题仍旧是开关电源设计中不可忽视的一环。在设计时,应持续关注最新的EMC标准和测试方法,确保产品设计满足最新要求,并能够适应未来更严格的电磁兼容性要求。
2025-11-24 15:44:23 69KB 设计经验 技术应用
1
### 电源技术——开关电源EMI的设计经验 #### 一、开关电源EMI源解析 开关电源中的EMI(电磁干扰)源主要包括功率开关管、整流二极管、高频变压器等内部组件,以及电网波动、雷击和外界辐射等外部因素。 1. **功率开关管**:工作在快速开关状态下的功率开关管会产生剧烈变化的电压和电流(dv/dt和di/dt),这使其成为EMI的主要来源之一。这些变化会产生电场和磁场耦合,导致EMI问题。 2. **高频变压器**:高频变压器由于其漏感的存在,在开关过程中会产生快速变化的电流(di/dt),进而产生磁场耦合,是EMI的另一个重要来源。 3. **整流二极管**:整流二极管在反向恢复过程中产生的电流断续点会在引线电感和其他杂散电感中产生高dv/dt,引发强烈的EMI。 4. **PCB(印制电路板)**:PCB作为上述EMI源之间的耦合通道,其设计质量直接影响到EMI的抑制效果。 #### 二、开关电源EMI传输通道分类 1. **传导干扰的传输通道** - 容性耦合:通过电容性连接在不同电路之间传递干扰信号。 - 感性耦合:通过互感作用在邻近导体之间传输干扰。 - 电阻耦合:包括: - 公共电源内阻产生的电阻传导耦合; - 公共地线阻抗产生的电阻传导耦合; - 公共线路阻抗产生的电阻传导耦合。 2. **辐射干扰的传输通道** - 在开关电源中,元件如二极管、电容和功率开关管可以视为电偶极子,而电感线圈则可以看作磁偶极子,它们都可以作为辐射干扰源。 - 当不存在屏蔽体时,这些偶极子产生的电磁波将通过空气(自由空间)传播。 - 存在屏蔽体的情况下,则需考虑屏蔽体的缝隙和孔洞对电磁波的泄漏效应。 #### 三、开关电源EMI抑制措施 针对开关电源的EMI问题,可以从以下几个方面入手: 1. **减小dv/dt和di/dt**:通过软开关技术等方法来降低电压和电流的突变率,减少EMI的产生。 2. **压敏电阻的应用**:合理配置压敏电阻可以有效降低浪涌电压,减少EMI的影响。 3. **阻尼网络**:利用阻尼网络抑制电压或电流的过冲现象,减少EMI。 4. **采用软恢复特性的二极管**:这类二极管可以降低高频段EMI,改善电源性能。 5. **有源功率因数校正**:采用APFC技术不仅可以改善功率因数,还能减少谐波干扰,降低EMI。 6. **电源线滤波器的设计**:精心设计的电源线滤波器能够有效抑制传导干扰。 7. **合理的接地处理**:良好的接地系统可以减少EMI,提高系统的稳定性。 8. **有效的屏蔽措施**:利用金属屏蔽壳或屏蔽带减少辐射干扰的扩散。 9. **合理的PCB设计**:优化PCB布局,减少信号线之间的耦合,降低EMI。 #### 四、高频变压器漏感控制 1. **选择合适的磁芯**:选择低漏感的磁芯材料可以显著降低漏感。 2. **减小绕组间的绝缘层**:“黄金薄膜”等新型绝缘材料不仅减少了绝缘层厚度,还提高了绝缘性能。 3. **增加绕组间耦合度**:通过改进绕组设计来增强绕组间的磁通耦合,减少漏感。 #### 五、高频变压器的屏蔽与降噪 1. **使用屏蔽带**:在变压器外部绕上铜箔制成的屏蔽带并进行接地,可以有效抑制漏磁场。 2. **加固措施**:使用环氧树脂或“玻璃珠”胶合剂固定磁心,减少磁心间的相对位移,降低工作过程中的噪声。 通过上述方法,可以在设计阶段有效地控制开关电源中的EMI问题,提高电源的整体性能和可靠性。
2025-11-24 14:44:08 68KB 电源技术 开关电源 设计经验
1
在开关电源设计中,EMI(电磁干扰)是影响电源性能和电磁兼容性(EMC)的关键因素。EMI干扰源主要来自于开关电源内部的功率开关管、整流二极管和高频变压器等元器件。这些元器件在高速切换时会产生高dv/dt和di/dt,即电压和电流的快速变化,从而导致电磁干扰。外部环境中的电网抖动、雷击和外界辐射也会对开关电源产生干扰。为了设计出符合EMC标准的开关电源,以下是一些重要的设计经验和知识点。 开关电源的EMI源包括功率开关管、整流二极管和高频变压器。功率开关管在开启和关闭的过程中,其电压和电流变化率(dv/dt和di/dt)非常高,因此它既是电场耦合也是磁场耦合的主要干扰源。高频变压器的漏感在磁芯关闭时会产生快速的电流变化,从而成为磁场耦合的重要干扰源。整流二极管的反向恢复特性会产生较高的电压变化率,导致电磁干扰。此外,PCB板设计也极其关键,因为它充当了上述干扰源之间的耦合通道。良好的PCB设计能够有效抑制EMI。 在开关电源EMI传输通道方面,可以将其分为传导干扰和辐射干扰。传导干扰的传输通道主要包括电源内阻、公共地线和公共线路阻抗所引起的电阻传导耦合。辐射干扰的传输通道则涉及到把元器件和导线假设成天线,利用电偶极子和磁偶极子理论进行分析。在没有屏蔽体的情况下,电磁波的传输通道是空气,而在有屏蔽体的情况下,则需考虑屏蔽体的缝隙和孔洞。 为了抑制EMI,可以采取以下几大措施:减小dv/dt和di/dt以降低干扰峰值和斜率;合理应用压敏电阻以降低浪涌电压;使用阻尼网络抑制过冲;采用具有软恢复特性的二极管降低高频段的EMI;实施有源功率因数校正和其他谐波校正技术;设计合理的电源线滤波器;进行合理的接地处理;采取有效的屏蔽措施;以及执行合理的PCB设计。 对于高频变压器而言,控制漏感是解决EMI问题的重要手段。这可以通过在电气设计和工艺设计上选择合适的磁芯和减小绕组间的绝缘层厚度来实现。同时,增加绕组间的耦合度也有助于减小漏感。此外,为了防止漏磁对周围电路的干扰,可以采用铜箔屏蔽带绕在变压器外部并接地。对于高频变压器的噪声(如啸叫、振动)问题,可以通过用环氧树脂粘接磁心或使用“玻璃珠”胶合剂来加固磁心,抑制相对位移的产生,从而减少噪声。 在开关电源设计中,必须通过优化元器件选择、布局、PCB设计、滤波和屏蔽技术等方法来有效控制EMI,确保电源的稳定性和可靠性,满足电磁兼容性要求。
2025-11-24 13:41:27 68KB EMC|EMI 开关电源
1
内容概要:本文档介绍了CTF竞赛中Web题型的解题技巧,涵盖从基础到进阶的各种知识点。首先介绍了基础工具如Burpsuite、Python、Firefox及其插件,以及扫描工具如Nmap、Nessus和OpenVAS。接着详细讲述了常见解题套路,包括直接查看网页源码、利用robots.txt、分析HTTP请求与响应、处理不常见请求类型、流量分析、日志审计、WebShell、源码泄漏、编码与解密、Windows特性、PHP弱类型、伪协议、绕过WAF、XSS攻击、命令执行漏洞、SQL注入等。每个部分都结合了具体的实例和工具使用说明,帮助读者理解和实践。 适合人群:对网络安全感兴趣并有一定编程基础的初学者,尤其是希望参加CTF竞赛或从事Web安全研究的技术人员。 使用场景及目标:①熟悉各类Web漏洞的原理和利用方法;②掌握常用的安全测试工具和技术;③通过实际案例加深对Web安全的理解,提高解题能力;④为参与CTF竞赛做好准备,能够在比赛中快速定位和解决问题。 其他说明:本文档提供了丰富的参考资料链接,方便读者深入学习。建议读者结合文档中的示例和提供的资源,进行动手实践,以更好地掌握所学内容。此外,由于Web安全领域不断发展,持续关注最新的技术和工具更新是非常重要的。
2025-11-21 23:44:34 898KB CTF Web安全 漏洞利用 网络安全
1