基于Transformer的轴承故障诊断Python代码实现及优化技巧

上传者: wfzteSqh | 上传时间: 2025-05-18 10:33:19 | 文件大小: 793KB | 文件类型: ZIP
内容概要:本文详细介绍了基于Transformer的轴承故障诊断项目的实现过程。首先,使用凯斯西储大学提供的经典轴承数据集进行预处理,将振动信号转换为适用于模型的numpy格式。接着,构建了一个轻量级的Transformer模型,通过卷积层提取局部特征并利用Transformer捕捉长距离依赖。训练过程中采用了动态学习率调整、梯度裁剪等技术确保模型稳定收敛。最终,模型在测试集上达到了98%以上的准确率,并展示了详细的混淆矩阵和损失曲线。此外,还提供了多种优化建议,如数据增强、频谱增强以及使用Focal Loss处理类别不平衡等问题。 适合人群:具备一定机器学习基础,特别是对深度学习和时间序列分析感兴趣的工程师和技术研究人员。 使用场景及目标:①用于工业设备维护中的轴承故障预测;②研究如何应用Transformer模型解决非自然语言处理领域的任务;③探索振动信号处理的新方法。 其他说明:附带完整的代码实现和实验结果图表,便于读者快速上手并进行进一步的研究和优化。

文件下载

资源详情

[{"title":"( 2 个子文件 793KB ) 基于Transformer的轴承故障诊断Python代码实现及优化技巧","children":[{"title":"基于Transformer的轴承故障诊断Python代码实现及优化技巧.pdf <span style='color:#111;'> 119.85KB </span>","children":null,"spread":false},{"title":"基于Transformer的轴承故障诊断Python完整代码:含数据集与直观结果图,助力快速实现故障诊断.html <span style='color:#111;'> 1007.00KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明