Udacity的无人驾驶汽车项目:此存储库包含我关于Udacity的第1学期的无人驾驶汽车纳米学位项目的总结报告,该项目专注于决策的计算机视觉和深度学习
2022-12-10 19:19:04 6.19MB python opencv machine-learning deep-learning
1
DeepGTAV:GTAV的插件,可将其转变为基于视觉的自动驾驶汽车研究环境
1
后视体验重播(HER) 这是的pytorch实现。 致谢: 要求 python = 3.5.2 openai-gym = 0.12.5(支持mujoco200,但您需要使用Gym> = 0.12.5,它在以前的版本中有一个错误。) mujoco-py = 1.50.1.56( 请使用此版本,如果您使用mujoco200,则可能在FetchSlide-v1中失败) pytorch = 1.0.0(如果使用pytorch-0.4.1,则可能会出现数据类型错误。稍后我将对其进行修复。 ) mpi4py 待办事项清单 支持GPU加速-尽管我添加了GPU支持,但是如果您没有强大的计算机,我仍然不建议您使用。 为每个MPI添加多个环境。 添加FetchSlide-v1的图和演示。 指令运行代码 如果要使用GPU,只需添加--cuda标志(不推荐,最好使用CPU) 。 训练FetchR
2022-12-09 18:35:43 5.35MB reinforcement-learning exploration ddpg her
1
在本文中,我们提出了一种深度强化学习方法,以评估虚拟创建的自动驾驶场景的性能。 马尔可夫决策过程用于将车辆状态映射到动作。 折扣和奖励功能也包含在决策策略中。 为了处理导致强化学习的标准不稳定的高维度输入,我们使用了经验重播。 为了进一步降低相关性,我们使用迭代更新来定期更新Q值。 基于随机目标函数的亚当优化器与整流线性单元激活函数一起用作神经网络中的优化器,有助于进一步优化过程。 这款自动驾驶汽车不需要任何带有标签的训练数据即可学习人类的驾驶行为。 受现实情况启发,基于动作的奖励功能用于训练车辆。 在我们的方法中已经证明,经过多次迭代,虚拟制造的车辆会产生无碰撞运动,并执行与人类相同的驾驶行为。
2022-12-09 15:58:08 558KB Reinforcement learning; Markov decision
1
leetcode题库 算法/NLP/深度学习/机器学习面试笔记 GitHub 地址: 算法/深度学习/机器学习面试问题整理,想法最初来源于这个. 此外,还包括我看到的所有机器学习/深度学习面经中的问题。 除了其中 DL/ML 相关的,其他与算法岗相关的计算机知识也会记录。 但是不会包括如前端/测试/JAVA/Android等岗位中有关的问题。 RoadMap 深度学习 机器学习 自然语言处理 C/C++ Python TODO 欢迎分享你在深度学习/机器学习面试过程中遇见的问题! 你可以直接以你遇到的问题作为 issue 标题,然后分享你的回答或者其他参考资料。 当然,你也可以直接创建 PR,分享问题的同时改正我的错误! 我会经常修改文档的结构(特别是代码的链接)。如果文中有链接失效,请告诉我! 文档中大部分链接都是指向仓库内的文件或标记;涉及编程代码的链接会指向我的另一个仓库() Reference exacity/: 深度学习中文版 elviswf/: 深度学习面试问题 回答对应的DeepLearning中文版页码 huihut/ 七月在线: - CSDN博客 在线 LaTeX 公
2022-12-09 14:42:19 29.28MB 系统开源
1
StyleGAN —官方TensorFlow实施的编码器 的StyleGAN2 这是我的StyleGAN编码器; 有很多类似的东西,但这是我的。 感谢@Puzer作为原始人,其中包括叉子;感谢@SimJeg作为构成此处所用ResNet模型基础的初始代码;感谢@Pender他的叉子! 从左到右:原始图像,在生成的StyleGAN面Kong上经过训练的ResNet的预测图像以及最终的编码图像。 我添加了什么: ResNet编码器-使用train_resnet.py自己训练或! 将模型放在data / finetuned_resnet.h5中 可以直接替换以使用带有train_effnet.
1
半监督分层递归图神经网络用于城市范围内的停车位可用性预测 这是SHARE体系结构的Pytorch实现,如论文《。 如果您在研究中利用SHARE模型,请引用以下内容: @article{zhang2019semi, title={Semi-Supervised Hierarchical Recurrent Graph Neural Network for City-Wide Parking Availability Prediction}, author={Zhang, Weijia and Liu, Hao and Liu, Yanchi and Zhou, Jingbo and Xiong, Hui}, booktitle={Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligen
1
[PhysX] PhysX 物理建模 学习教程 (英文版)Learning Physics Modeling with PhysX.pdf 能找到的资料不多关于Physx的内容。
2022-12-07 21:48:43 1.44MB PhysX
1
2.3机械臂动力学控制方法 2.3.1确定性机械臂动力学控制方法 机械臂的动力学控制问题的主要研究内容为设计合适的控制器,控制各关节的驱动力矩, 驱动机械臂在期望的轨迹上运动,使各关节的位移、速度、加速度跟踪上相应的期望值。确 定性机械臂是指不受外扰、建模精确的机械臂,这类机械臂在工程实践中极少,是理想化的 机械臂,一般的机械臂都会带有不确定性,但对确定性机械臂的控制是研究一般机械臂的控 制方法的基础。对确定性机械臂研究得足够透彻才能更好地研究不确定性机械臂。作为一个 应用广泛的机械系统,机械臂的控制方法有很多种。常用的方法包括以下这几种。 PD控制‘6,7,27]:工程实践上PID控制是应用最广泛的一种控制方法,机械臂的控制中常 常使用到PD控制器。PD控制器结构简单、算法容易实现。对具有精确模型的系统控制具有 非常好的控制品质。对于系统结构、参数没有精确建模的系统,可以通过现场调试来确定控 制器参数,提供良好的品质,并且调试方法简单直观。对于具有时变的不确定性系统,PD控 制器的效果不太理想,对系统运行中出现的变化适应能力不强。 Backstepping控制‘17,2邑291:Backstepping控制的思想是把复杂的系统分解为不超过系统阶 数的多个简单的子系统,为每个子系统设计李雅普诺夫函数和虚拟控制量,逐个子系统反推, 直到最后一个子系统时完成控制器的设计。这是对复杂系统的~种简化处理方法。 Backstepping控制的每步反推中设计的李雅普诺夫函数都需要求导,而且后一个子系统的李 雅普诺夫函数会包含前一个子系统的李雅普诺夫函数,因而多次反推后会出现很多代数项, 计算量会随着系统阶数的增加而快速增加。 其他基于模型的控制:当可以获取精确模型时,系统的动态特性可以由动力学方程来描 述。可以采用基于数学模型的控制方法,如补偿控制、最优控制、非线性反馈控制等。但这 类方法只适合于理想化的确定性机械臂,难以应用到带不确定性的一般机械臂上。 这些方法往往应用于对理想模型的研究,在面对具有不确定性的实际机械臂系统时,控 制品质难以得到保证。但是这些基本的控制方法,可以作为不确定性机械臂研究的基础。通 过引入自适应、鲁棒控制等思想,这些方法可以扩展到不确定性机械臂的应用上。 2.3.2不确定性机械臂动力学控制方法 在实际的工程应用中,影响机械系统工作的因素非常多,要考虑所有因素而获取机械臂 的精确数学模型是不可能的。在建模时必须做出一定的假设,忽略一些影响较小的、难以建 模的因素,才能建立出在一定精度范围内能描述实际系统的近似模型。实际应用中的机械臂 都是带有不确定性的。这些不确定性包括一些参数的不确定性,如连杆的质量、长度、质心 之类的物理量难以精确测量,只能部分已知或未知,也包括一些非参数的因素,如高频未建 模动态、摩擦力等。另外机械臂也不可避免地受到外部扰动的影响,更由于机械臂负载的不 确定性,导致机械臂系统具有较强的不确定性。结构或参数的不确定性和外部扰动会使控制 效果受到不同程度的影响,严重时会导致机械臂系统不稳定。因此,对机械臂控制方法的研 12
2022-12-07 16:16:26 3.47MB 视觉
1
足球预测 SoccerPredictor使用机器学习来预测英超联赛的比赛结果,重点是预测胜负(对应于对双倍机会的押注)。 预测以非常规方式建模为时间序列分类。 将为每个团队创建一个神经网络模型,并同时对其进行训练。 注意:请记住,由于我没有发布数据集,因此您将无法进行实际的培训。 如果您想对其进行测试,则必须自己组装。 提供更有趣功能的网站很难抓取,但绝对有可能。 因此,如果您想构建类似的东西或者只是看看我是如何实现各种东西的,则可以将其作为主要灵感。 如果没有数据集,则只能对附加的文件集进行可视化和回测。 这主要用于演示目的。 请参考随附的以获取有关该程序如何工作的更多信息。 结果 在测试期间,获得的最佳结果是利润1069 % ,预测精度约为90 % ,ROI为33.4 % 。 测试期间的时间跨度为113天,押注了150场比赛中的32场。 安装 运行该程序需要手动安装,例如:
2022-12-07 16:13:46 2.41MB python machine-learning time-series tensorflow
1