基于ROS和深度强化学习不同算法的移动机器人导航避障python源码+使用详细说明.zip使用步骤如下: 因为有未知问题,需要把小车在gazebo中的启动,与tesorflow强化学习分开成两个文件夹,合在一起会报错 1.创建虚拟环境 NDDDQN 2.安装tensorflow pip install tensorflow-gpu==1.14.0 -i https://pypi.tuna.tsinghua.edu.cn/simple 3.在两个工作空间进行编译 在catkin_ws和catkin_ws1分别编译: catkin_make 基于ROS和深度强化学习不同算法的移动机器人导航避障python源码+使用详细说明.zip基于ROS和深度强化学习不同算法的移动机器人导航避障python源码+使用详细说明.zip基于ROS和深度强化学习不同算法的移动机器人导航避障python源码+使用详细说明.zip基于ROS和深度强化学习不同算法的移动机器人导航避障python源码+使用详细说明.zip基于ROS和深度强化学习不同算法的移动机器人导航避障python源码+使用详细说明.zip基于
2024-06-14 18:54:28 6.05MB python
基于支持向量机递归特征消除(SVM_RFE)的分类特征选择算法,matlab代码,输出为选择的特征序号。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2024-06-14 18:29:26 118KB matlab 支持向量机
1
yolov8 yolov8_使用yolov8实现行人检测算法_优质项目
2024-06-14 17:19:15 155.52MB 行人检测 目标检测 深度学习
1
生成式大模型备案材料 《落实算法安全主体责任基本情况》 《算法安全自评估报告》 《算法备案承诺书》 大模型网信办备案全网最详细说明.docx 互联网信息服务算法推荐管理规定.docx 生成式人工智能服务管理暂行办法.docx 互联网信息服务深度合成管理规定.docx 生成式人工智能(大语言模型)上线备案表1.0版.docx 生成式人工智能服务已备案信息(定期更新).xlsx 生成式人工智能服务安全基本要求 .pdf 市委网信办权责清单.pdf 自查评估表-模版.pdf 大模型生成式人工智能上线备案-安全评估.docx 生成式人工智能服务自查要点.docx
2024-06-14 15:58:22 2.85MB
1
C语言编写的惯性导航和卫星导航的组合导航算法程序,可以实现纯惯性导航解算,组合导航解算,设有传统Kalman滤波、自适应和抗差Kalman滤波,能够进行初始对准,包括间接粗对准和Kalman滤波精对准,可以计算出惯导所处载体的姿态角、速度,位置等信息;数据设置格式和软件使用方式见安装包的说明;算法说明会在后续加入;源代码在Resource文件夹中
2024-06-14 10:21:00 625KB
武汉理工大学数字水印算法设计.doc
2024-06-13 18:34:35 521KB 文档资料
资源为Hybrid A * 算法Python源码,该资源是博客 动力学约束下的运动规划算法——Hybrid A*算法(附程序实现及详细解释)的配套资源 主要介绍动力学约束下的运动规划算法中非常经典的Hybrid A*算法,大致分为三部分,第一部分是在传统A * 算法的基础上,对Hybrid A * 算法的原理、流程进行理论介绍。第二部分是详细分析 MotionPlanning运动规划库中Hybrid A * 算法的源码,进一步深入对Hybrid A * 算法的具体细节 进行理解。 第三部分是结合前面第一部分的理论和第二部分的详细源码,对Hybrid A * 算法的流程进行综合的概括总结。
2024-06-12 11:59:22 3.56MB python 路径规划 移动机器人 运动规划
1
使用python语言设计一个带有图形用户界面的应用程序,该程序能模拟银行家算法,并提供直观的资源分配与回收功能。主要功能包括输入进程和资源数量、显示当前资源状态、检查系统安全状态、处理资源请求、释放资源等。
2024-06-11 22:00:29 31.66MB 操作系统 windows python 编程语言
1
蚁群算法(ant colony algorithm,ACA)是由意大利学者M.Dorigo等人于20世纪90年代初提出的一种新的模拟进化算法,其真实地模拟了自然界蚂蚁群体的觅食行为。M.Dorigo等人将其用于解决旅行商问题(traveling salesman problem,TSP),并取得了较好的实验结果。 近年来,许多专家学者致力于蚁群算法的研究,并将其应用于交通、通信、化工、电力等领域,成功解决了许多组合优化问题,如调度问题(job-shop scheduling problem)、指派问题(quadratic assignment problem)、旅行商问题(traveling salesman problem)等。
2024-06-11 02:57:18 2KB matlab 蚁群算法 TSP问题
1