基于Carsim与Simulink的BBW-EMB线控制动系统仿真研究:独立车轮制动控制与制动力分配模块设计,线控制动系统仿真。 Carsim和Simulink联合仿真线控制动系统BBW-EMB系统。 包含简单的制动力分配和四个车轮的线控制动机构 四个车轮独立BLDCM三环PID闭环制动控制,最大真实还原线控制动系统结构。 本模型中未自定义 【踏板力】 模块,但是可以根据自己的需求设置踏板力,如有需要可以自己拿去进一步开发。 【制动力分配】功能采用的是Carsim自带的分配方式,并对该模块进行了模块化设计,也可以根据个人需要进一步开发使用自己设计的模块,使用Carsim自带的是为了更好的与Carsim制动做对比。 模型中未集成Abs功能,如有需要可以去主页中了解abs功能,然后自己集成进去。 图中: 1. Carsim原有的液压制动和本模型线控制动的对比。 2 3 4 5. 模型内图片。 所建模型在采用Carsim制动力分配算法时,可以很好的还原Carsim原有的制动响应。 可以直接拿去做进一步开发。 ,关键词:线控制动系统仿真;Carsim和Simulink联合仿真;BBW-EM
2025-12-02 12:43:24 457KB 数据仓库
1
carsim与simulink联合仿真-ABS(制动防抱死系统) 入门——详细步骤 博客中的simulink仿真文件!
2025-12-02 11:54:27 92KB carsim与simulink
1
纯跟踪控制与路径跟踪算法是自动驾驶和智能车辆领域中的核心技术之一。这些算法的主要目标是确保车辆能够准确、稳定地沿着预设的路径行驶。在实际应用中,这些算法通常结合车辆动力学模型和实时传感器数据,以实现精确的轨迹执行。 在联合仿真中, Carsim 和 Simulink 是两种常用的工具。Carsim是一款专业的车辆动力学模拟软件,它能够精确地模拟各种驾驶条件下的车辆行为。Simulink则是MATLAB环境下的一个动态系统建模和仿真平台,广泛应用于控制系统的设计和分析。 联合仿真将Carsim的车辆模型与Simulink的控制算法相结合,可以提供一个全面的测试环境。在Simulink中,我们可以设计和优化路径跟踪控制器,如PID控制器、滑模控制器或者基于模型预测控制(MPC)的算法。然后,通过接口将这些控制器与Carsim对接,使控制器的输出作为车辆的输入,以模拟真实世界中的驾驶情况。 在路径跟踪算法中,有几种常见的方法: 1. **PID控制器**:这是最基础也是最常用的控制策略,通过比例(P)、积分(I)和微分(D)项的组合来调整车辆的行驶方向,使其尽可能接近预定路径。 2. **滑模控制**:滑模控制是一种非线性控制策略,其优点在于具有良好的抗干扰性和鲁棒性,能有效应对车辆模型的不确定性。 3. **模型预测控制(MPC)**:MPC是一种先进的控制策略,它考虑到未来一段时间内的系统动态,通过优化算法在线计算最佳控制序列,以达到最小化跟踪误差或满足特定性能指标的目的。 在联合仿真过程中,我们可以通过修改控制器参数、调整车辆模型或改变仿真条件,来评估不同算法在不同场景下的性能。图像文件(如1.jpg、2.jpg、3.jpg)可能展示了仿真结果的可视化,包括车辆的行驶轨迹、控制信号的变化以及误差分析等。而纯跟踪控制路径跟踪算法联合.txt文件可能包含了更详细的仿真设置、结果数据和分析。 纯跟踪控制与路径跟踪算法的研究对于提升自动驾驶车辆的安全性和性能至关重要。通过Carsim和Simulink的联合仿真,我们可以进行深入的算法开发与验证,为实际应用提供可靠的基础。
2025-11-28 23:44:58 206KB
1
标题中的“LQR横向轨迹跟踪控制”涉及到的是车辆动力学领域的一个重要技术,即线性二次调节器(Linear Quadratic Regulator, LQR)应用于车辆的横向轨迹跟踪控制。LQR是一种反馈控制策略,用于最小化一个动态系统的性能指标,如能量消耗或系统误差平方和。在这个场景中,LQR被用来优化车辆的转向控制,使其能够精确地沿着预设的轨迹行驶。 “Simulink和CarSim联合仿真”是指使用两种不同的仿真工具进行协同工作。Simulink是MATLAB的一个扩展,提供了一个图形化的建模环境,用于模拟和分析多域动态系统。而CarSim是一款专业的车辆动力学仿真软件,能够模拟各种复杂的车辆行为。通过联合仿真,可以结合Simulink的模型构建灵活性和CarSim的车辆物理模型的精确性,实现更真实的车辆控制系统的测试和优化。 描述中提到的“双移线状况”是指车辆在行驶过程中需要连续改变行驶方向的工况,例如避障或在赛道上的连续弯道。这种情况下,车辆的横向稳定性及轨迹跟踪能力显得尤为重要。从描述中我们可以推断,LQR控制策略在这种挑战性的环境中表现良好,能够有效跟踪预设轨迹。 标签“程序”暗示了这个压缩包可能包含了实现LQR控制算法的代码或者Simulink模型。可能的文件“横向轨迹跟踪控制.html”可能是对整个控制系统的介绍或报告,而“1.jpg”、“2.jpg”、“3.jpg”很可能是仿真过程中的截图,展示LQR控制的效果。“横向轨迹跟.txt”可能是一个文本文件,里面可能记录了仿真参数、设置细节或者控制算法的说明。 综合这些信息,我们可以理解这个项目是关于使用LQR控制理论,通过Simulink和CarSim联合仿真来实现车辆在双移线情况下的横向轨迹跟踪。通过这样的仿真研究,可以深入理解LQR如何处理复杂驾驶情境,并为实际车辆控制系统的设计和优化提供参考。
2025-11-20 18:55:56 172KB
1
基于LQR算法的自动驾驶车道保持辅助(LKA)系统的设计与实现方法。首先解释了LKA的基本概念及其重要性,接着深入探讨了使用经典二自由度自行车模型来描述车辆动态特性,并展示了如何利用Matlab定义状态空间方程。随后,文章讲解了LQR控制器的设计步骤,包括选择合适的Q和R矩阵以及求解反馈增益矩阵K的方法。此外,还阐述了如何将Carsim软件用于模拟车辆动力学行为,而Simulink则用来运行控制算法,两者通过特定接口进行数据交换,实现了联合仿真平台的搭建。文中提供了具体的S-function代码片段,用于展示如何在Simulink中处理来自Carsim的数据并计算所需的前轮转角。最后分享了一些调参技巧,如调整Q矩阵中各元素的比例关系以改善系统性能,确保车辆能够稳定地沿车道行驶。 适合人群:对自动驾驶技术感兴趣的科研人员、工程师以及相关专业的学生。 使用场景及目标:适用于希望深入了解LQR算法在自动驾驶领域的应用,特别是想要掌握车道保持辅助系统设计流程的人群。通过本教程可以学会构建完整的LKA控制系统,从理论推导到实际仿真的全过程。 其他说明:文中提到的内容不仅涵盖了LQR算法的基础知识,还包括了许多实用的操作细节和技术要点,有助于读者更好地理解和应用这一先进的控制策略。同时鼓励读者尝试不同的参数设置,探索更多可能性。
2025-11-16 15:53:11 471KB
1
利用Carsim和Simulink构建驾驶模拟软件实时仿真的方法,涵盖硬件连接、cpar文件设置、UDP通信配置以及自动驾驶算法测试等方面。首先讲解了如何将罗技G29方向盘接入Carsim,通过Simulink作为中间件实现信号转换。接着深入探讨了cpar文件的关键参数配置,确保实时仿真效果。然后阐述了UDP通信的具体实现步骤,解决了常见的网络传输问题。最后展示了如何在Prescan环境中进行自动驾驶算法测试,并提供了实时性调优技巧。 适合人群:对无人驾驶技术和实时仿真感兴趣的工程师和技术爱好者,尤其是那些希望低成本搭建自动驾驶测试平台的研究人员。 使用场景及目标:适用于想要深入了解Carsim和Simulink联合仿真的技术人员,旨在帮助他们掌握从硬件连接到算法测试的全流程,最终实现高效的自动驾驶系统开发和验证。 阅读建议:读者应具备一定的MATLAB/Simulink基础,熟悉基本的汽车动力学概念。文中提供的具体代码片段和配置建议可以直接应用于实际项目中,建议边阅读边动手实践,以便更好地理解和应用所学知识。
2025-11-08 10:23:14 420KB
1
内容概要:本文详细探讨了基于时间到碰撞(TTC)和驾驶员安全距离模型的自动紧急制动(AEB)算法在Carsim与Simulink联合仿真环境下的实现方法和技术要点。文中介绍了AEB算法的核心模块,包括CCR M、CCRS、CCRB模型,二级制动机制,逆制动器模型和控制模糊PID模型。同时,阐述了TTC和驾驶员安全距离模型的具体应用及其重要性,并强调了Carsim与Simulink联合仿真的优势,即通过整合车辆动力学和控制系统建模,实现了对AEB系统的闭环仿真。此外,还讨论了法规测试场景的搭建技巧,如CNCAP和ENCAP标准的应用,以及一些常见的调试经验和注意事项。 适合人群:从事自动驾驶技术研发的专业人士,尤其是关注AEB系统设计与仿真的工程师。 使用场景及目标:适用于希望深入了解AEB系统工作原理的研究人员和技术开发者,旨在提高AEB系统的性能和可靠性,确保自动驾驶汽车在复杂交通环境下能够安全有效地避免碰撞。 其他说明:文中提供了多个代码片段和模型示例,帮助读者更好地理解和实践AEB算法的设计与优化。同时,作者分享了许多个人实践经验,包括常见错误和解决方案,有助于初学者快速掌握相关技能。
2025-10-20 20:18:07 1.16MB
1
内容概要:本文详细介绍了如何利用Python和Carsim进行车辆动力学模型的验证。主要内容包括设置路面附着系数、定义输入函数(如阶跃输入和正弦输入),并编写简化的车辆动力学模型来计算质心侧偏角、横摆角速度和侧向加速度。此外,还讨论了轮胎魔术公式的参数转换方法及其在低附着路面上的应用,以及解决联合仿真中时间同步问题的技术手段。文中强调了参数对齐的重要性,并提供了具体的参数配置示例。为了提高模型精度,提出了改进措施,如采用梯形波代替阶跃输入、引入轮胎动力学延迟模型等。最终,通过比较自建模型与Carsim的仿真结果,评估模型的有效性和准确性。 适合人群:从事车辆工程、自动驾驶技术研发的专业人士,尤其是需要进行车辆动力学建模和仿真的研究人员和技术人员。 使用场景及目标:适用于希望深入了解车辆动力学模型验证流程的研究人员和技术人员。主要目标是在不同路况条件下验证自建模型的可靠性,为后续控制系统开发提供坚实的基础。 其他说明:文中提供的代码片段和方法可以帮助读者更好地理解和应用相关理论,同时提醒了一些常见的错误和注意事项,有助于提高仿真的准确性和稳定性。
2025-10-14 22:29:17 268KB
1
基于Carsim和Simulink的变道联合仿真:融合路径规划算法与MPC轨迹跟踪,可视化规划轨迹适用于弯道道路与变道,CarSim与Simulink联合仿真实现变道:路径规划算法+MPC轨迹跟踪算法的可视化应用,适用于弯道道路与变道功能,基于Carsim2020.0与Matlab2017b,carsim+simulink联合仿真实现变道 包含路径规划算法+mpc轨迹跟踪算法 带规划轨迹可视化 可以适用于弯道道路,弯道车道保持,弯道变道 Carsim2020.0 Matlab2017b ,carsim;simulink联合仿真;变道;路径规划算法;mpc轨迹跟踪算法;轨迹可视化;弯道道路;弯道车道保持;Carsim2020.0;Matlab2017b,CarSim联合Simulink实现弯道轨迹规划与变道模拟研究
2025-09-21 14:50:31 1013KB
1
Carsim与Simulink联合仿真实现变道路径规划算法与MPC轨迹跟踪算法的可视化应用,适用于弯道道路的智能驾驶仿真。,carsim+simulink联合仿真实现变道 包含路径规划算法+mpc轨迹跟踪算法 带规划轨迹可视化 可以适用于弯道道路,弯道车道保持,弯道变道 Carsim2020.0 Matlab2017b ,关键词:Carsim; Simulink; 联合仿真; 变道; 路径规划算法; MPC轨迹跟踪算法; 规划轨迹可视化; 弯道道路; 弯道车道保持; 弯道变道; CarSim2020.0; Matlab2017b。,CarSim联合Simulink实现弯道轨迹规划与变道模拟研究
2025-09-21 14:49:33 214KB rpc
1