matlab+神经网络+mnist手写体识别
2022-07-06 21:05:45 7.24MB matlab 神经网络 手写体识别
神经网络的诞生是人们想尝试设计出模仿大脑的算法(人脑是最好的学习机器)。假设:大脑做所有事情和不同的方法,不需要用上千个不同的程序去实现。相反,大脑处理的方法,只需要一个单一的学习算法就可以了。因为人体有同一块脑组织可以处理光、声或触觉信号,那么也许存在一种学习算法(而不是成千上万种算法),可以同时处理视觉、听觉和触觉。 神经网络模型建立在很多神经元之上,每一个神经元又是一个个学习模型。这些神经元(也叫激活单元,activation unit)采纳一些特征作为输出,并且根据本身的模型提供一个输出。
2022-07-06 12:04:57 7.63MB 代码
1
本科毕设手写体识别的 设计流程网站
2022-06-23 18:06:59 405KB 手写体识别
1
matlab_手写体数字识别的程序,用了三种方法,贝叶斯,最近邻和BP神经网络
2022-06-14 15:12:14 158KB matlab 手写体识别 贝叶斯
Tensorflow学习实战之mnist手写体识别数据准备构建模型训练模型评估结果可视化显示 Tensorflow继续学习,今天是入门级的mnist手写体识别,改变前两次的线性回归,这次是逻辑回归,这样随之改变的是损失函数等 Tensorflow里面有一个examples的MNIST的手写,直接运行会自动下载。 训练了20次,效果还不错,慢慢的理解,把以前不懂得好多东西,学习中慢慢得到补充 收获: reshape,行优先,逐行排列,相当于把一整行数字排列后按reshape得行列填充进去,我的理解相当于图像里得resize one hot独热编码,一个为1,其余所有为0,适用于分类任务,是一种稀
2022-06-14 12:59:17 470KB fl flow IS
1
实验环境 win10 + anaconda + jupyter notebook Pytorch1.1.0 Python3.7 gpu环境(可选) MNIST数据集介绍 MNIST 包括6万张28×28的训练样本,1万张测试样本,可以说是CV里的“Hello Word”。本文使用的CNN网络将MNIST数据的识别率提高到了99%。下面我们就开始进行实战。 导入包 import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision imp
2022-06-01 23:43:43 54KB c IS mnist
1
基于机器学习的手写体识别系统,matlab实现,demo
2022-05-29 16:05:44 46KB matlab 机器学习 源码软件 开发语言
基于神经网络的手写体识别包含数据集算法以及详细说明10000字
2022-05-29 12:05:11 424KB 神经网络 算法 源码软件 人工智能
基于华为自研MindSpore深度学习框架构建网络模型,实现MNIST手写体识别实验。 包含可运行源码、运行结果演示视频,本地MindSpore详细配置教程(私信可远程配置) 本例子会使用MindSpore深度学习框架实现一个简单的图片分类实验,整体流程如下: 1、 处理需要的数据集,这里使用了MNIST数据集。 2、 定义一个网络,这里我们使用LeNet网络。 3、 定义损失函数和优化器。 4、 加载数据集并进行训练,训练完成后,查看结果及保存模型文件。 5、 加载保存的模型,进行推理。 6、 验证模型,加载测试数据集和训练后的模型,验证结果精度。
2022-05-11 11:31:37 35.17MB MindSpore MNIST MNIST手写体 手写体识别
搭建一个简单的神经网络模型,训练mnist数据集,实现数字手写体识别
2022-05-07 19:04:34 11.06MB 神经网络 数据集 手写体识别 python
1