基于神经网络的多分类问题(手写体识别)(matlab)

上传者: amyniez | 上传时间: 2022-07-06 12:04:57 | 文件大小: 7.63MB | 文件类型: RAR
神经网络的诞生是人们想尝试设计出模仿大脑的算法(人脑是最好的学习机器)。假设:大脑做所有事情和不同的方法,不需要用上千个不同的程序去实现。相反,大脑处理的方法,只需要一个单一的学习算法就可以了。因为人体有同一块脑组织可以处理光、声或触觉信号,那么也许存在一种学习算法(而不是成千上万种算法),可以同时处理视觉、听觉和触觉。 神经网络模型建立在很多神经元之上,每一个神经元又是一个个学习模型。这些神经元(也叫激活单元,activation unit)采纳一些特征作为输出,并且根据本身的模型提供一个输出。

文件下载

资源详情

[{"title":"( 29 个子文件 7.63MB ) 基于神经网络的多分类问题(手写体识别)(matlab)","children":[{"title":"神经网络多分类问题","children":[{"title":"fmincg.m <span style='color:#111;'> 8.54KB </span>","children":null,"spread":false},{"title":"nnCostFunction.m <span style='color:#111;'> 4.84KB </span>","children":null,"spread":false},{"title":"ex4.pdf <span style='color:#111;'> 385.02KB </span>","children":null,"spread":false},{"title":"debugInitializeWeights.m <span style='color:#111;'> 841B </span>","children":null,"spread":false},{"title":"checkNNGradients.m <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"displayData.m <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"ex4weights.mat <span style='color:#111;'> 77.73KB </span>","children":null,"spread":false},{"title":"predict.m <span style='color:#111;'> 585B </span>","children":null,"spread":false},{"title":"computeNumericalGradient.m <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"submit.m <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"ex4data1.mat <span style='color:#111;'> 7.16MB </span>","children":null,"spread":false},{"title":"sigmoid.m <span style='color:#111;'> 138B </span>","children":null,"spread":false},{"title":"token.mat <span style='color:#111;'> 239B </span>","children":null,"spread":false},{"title":"lib","children":[{"title":"submitWithConfiguration.m <span style='color:#111;'> 5.80KB </span>","children":null,"spread":false},{"title":"makeValidFieldName.m <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"jsonlab","children":[{"title":"README.txt <span style='color:#111;'> 18.92KB </span>","children":null,"spread":false},{"title":"saveubjson.m <span style='color:#111;'> 15.75KB </span>","children":null,"spread":false},{"title":"loadjson.m <span style='color:#111;'> 18.29KB </span>","children":null,"spread":false},{"title":"ChangeLog.txt <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false},{"title":"loadubjson.m <span style='color:#111;'> 15.21KB </span>","children":null,"spread":false},{"title":"savejson.m <span style='color:#111;'> 17.05KB </span>","children":null,"spread":false},{"title":"LICENSE_BSD.txt <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false},{"title":"varargin2struct.m <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"AUTHORS.txt <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"jsonopt.m <span style='color:#111;'> 881B </span>","children":null,"spread":false},{"title":"mergestruct.m <span style='color:#111;'> 771B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"randInitializeWeights.m <span style='color:#111;'> 1006B </span>","children":null,"spread":false},{"title":"ex4.m <span style='color:#111;'> 7.91KB </span>","children":null,"spread":false},{"title":"sigmoidGradient.m <span style='color:#111;'> 694B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明