内容概要:本文档详细介绍了针对数字IC设计新手的一个全流程项目,涵盖从RTL设计到门级电路布局的各个环节。具体步骤包括RTL设计、综合、floorplan、前仿真、门级电路布局等。项目采用40nm工艺库,设计目标为SNN(Spiking Neural Network)加速器。文档提供了详细的流程说明、RTL源代码、门级电路综合报告及ICC2布局等资料,并附带完整的makefile和tcl脚本以支持自动化流程。 适合人群:数字IC设计领域的初学者和技术爱好者,尤其是希望系统了解从RTL到门级电路布局全流程的新手。 使用场景及目标:帮助新手掌握数字IC设计的关键技术和工具,熟悉从RTL设计到门级电路布局的具体流程,提升实际操作能力。 其他说明:文档不仅提供了理论指导,还包含了大量实用的操作细节和自动化脚本,使新手能够快速上手并完成一个完整的IC设计项目。
2025-09-10 09:54:58 1.83MB
1
储值卡系统作为一种预付费消费模式,在连锁门店中的应用广泛,它不仅可以提升顾客的消费体验,同时也能够提前为企业带来现金流。超精简储值卡系统的提出,则是为了在保证功能性的同时,尽可能地简化操作流程,使得系统的管理和使用更加便捷高效。在连锁门店版中,这种系统特别针对了连锁店的运营特点进行了优化,以便更好地适应多店管理的复杂性。 超精简储值卡系统在设计理念上强调了用户体验的直观性和操作的便捷性。它通常会有一个简洁的用户界面,让用户即便在没有专业知识的情况下也能够轻松操作。此外,系统的界面设计也会考虑到各种用户群体,比如老年用户或技术新手,确保所有人都能够无障碍使用。 在功能实现上,超精简储值卡系统通常会具备以下几点核心特点: 1. 快速充值:系统会提供多种充值方式,如现金、信用卡、在线支付等,方便顾客根据自己的喜好进行充值操作。 2. 实时查询:用户可以随时查询自己的储值卡余额、消费记录和积分情况,增加了消费的透明度和用户的信任感。 3. 自动积分:消费时系统会根据消费金额自动累计积分,积分可以兑换礼品或服务,增加顾客的忠诚度。 4. 多种优惠:连锁门店可以根据不同的营销策略设置多种优惠方式,比如节假日折扣、会员日特惠等,吸引顾客消费。 5. 安全保障:储值卡系统会有严格的安全措施,如数据加密、交易验证等,确保用户资金和信息安全。 6. 多店通用:对于连锁门店来说,储值卡在所有门店通用是非常重要的,这要求系统能够处理跨店消费和积分累计。 7. 数据管理:系统后台会收集和分析各种消费数据,帮助门店进行库存管理、销售预测和顾客消费行为分析。 在实际应用中,为了实现连锁门店之间的信息同步和数据共享,超精简储值卡系统可能会采用云平台技术,实现数据的集中管理和实时更新。这不仅减少了各个门店在信息沟通上的时间成本,也提高了整个连锁体系的运作效率。 随着技术的发展,超精简储值卡系统也在不断地融入新的技术元素,如物联网、人工智能等,这些技术的加入使得系统能够提供更加智能化的服务,比如根据用户历史消费行为进行个性化推荐,或者使用生物识别技术进行身份验证。 超精简储值卡系统作为连锁门店的一个重要组成部分,其作用不仅限于提供一种支付手段,更是作为连接门店与顾客、提升销售效率、增强客户黏性的重要工具。
2025-09-05 12:02:32 78KB
1
数字电路之门电路笔记 数字电路中的门电路是实现基本逻辑运算和复合运算的单元电路。常用的门电路在逻辑功能上又与门、或门、非门、与非门、或非门、与或非门、异或门等几种。在电子电路中,用高、低电平分别表示二值逻辑的1和0两种逻辑状态。 数字电路中的逻辑门电路可以分为正逻辑和负逻辑两种。正逻辑门电路的输入、输出电压的高电平定义为逻辑“1”,低电平定义为逻辑“0”。负逻辑门电路的输入、输出电压的低电平定义为逻辑“1”,高电平定义为逻辑“0”。同一个逻辑门电路,在正逻辑定义下可以实现与门功能,在负逻辑定义下可以实现或门功能。数字系统设计中,不是采用正逻辑就是采用负逻辑,而不能混合使用。 集成电路由于体积小、重量轻、可靠性好,因而在大多数领域里迅速取代了分立器件组成的数字电路。在数字集成电路发展的历史过程中,首先得到推广应用的是双极型的TTL电路。然而,TTL电路存在着一个严重的缺点就是功耗比较大。所以用TTL电路只能做成小规模集成电路(Small Scale Integration,简称SSI,其中仅包含10个以内的门电路)和中规模集成电路(Medium Scale Integration,简称MSI,其中包含10~100个门电路),而无法制作成大规模集成电路(Large Scale Integration,简称LSI,其中包含1000~10000个门电路)和超大规模集成电路(Very Large Scale Integration,简称VLSI,其中包含10000个以上的门电路)。CMOS集成电路最突出的优点在于功耗极低,所以非常适合于制作大规模集成电路。随着CMOS制作工艺的不断进步,无论在工作速度还是在驱动能力上,CMOS电路都已不比TTL电路逊色。因此,CMOS电路便逐渐取代了TTL电路而成为当前数字集成电路的主流产品。 在使用CMOS电路时,需要注意静电防护和过流保护。静电防护是为了防止由静电电压造成的损坏,可以通过在存储和运输CMOS器件时不要使用易产生静电高压的化工材料和化纤织物包装,组装、调试时,使电烙铁和其他工具、仪表、工作台台面等良好接地,操作人员的服装和手套等应选用无静电的原料制作等方法来实现。过流保护是为了防止输入电流过大损坏电路,可以通过在输入端与信号源之间串进保护电阻,输入端与电容之间接入保护电阻,输入端接长线时,亦应在输入端接入保护电阻等方法来实现。 CMOS数字集成电路有多种系列,如4000系列、HC/HCT系列、AHC/AHCT系列、VHC/VHCT系列、LVC系列、ALVC系列等。TTL门电路采用双极型三极管作为开关器件,分NPN和PNP型两种,因为在工作时有电子和空穴两种载流子参与导电过程,故称这类三极管为双极型三极管(Bipolar Junction Transistor,简称BJT)。反相器是TTL集成门电路中电路结构最简单的一种,这种类型电路的输入端和输出端均为三极管结构,所以称为三极管-三极管逻辑电路(Transistor-Transistor Logic),简称TTL电路。TI公司最初生产的TTL电路取名为SN54/74系列,我们称它为TTL基本系列。后又相继生产了74H、74L、74S、74LS、74AS、74ALS、74F等改进系列。 数字电路中的门电路是实现基本逻辑运算和复合运算的单元电路,常用的门电路在逻辑功能上又与门、或门、非门、与非门、或非门、与或非门、异或门等几种。在电子电路中,用高、低电平分别表示二值逻辑的1和0两种逻辑状态。数字电路中的逻辑门电路可以分为正逻辑和负逻辑两种,集成电路由于体积小、重量轻、可靠性好,因而在大多数领域里迅速取代了分立器件组成的数字电路。在使用CMOS电路时,需要注意静电防护和过流保护,CMOS数字集成电路有多种系列,TTL门电路采用双极型三极管作为开关器件。
2025-08-17 10:48:27 68KB 数字电路 电子技术基础
1
 从小巧的电子手表,到复杂的电子计算机,它们的许多元件被制成集成电路的形式,即把几十、几百,甚至成干上万个电子元件制作在一块半导体片或绝缘片上。每种集成电路都有它独特的作用。有一种用得最多的集成电路叫门电路。常用的门电路有与门、非门、与非门。
2025-08-17 09:27:17 41KB 数字电路 与门电路 基础知识
1
 从小巧的电子手表,到复杂的电子计算机,它们的许多元件被制成集成电路的形式,即把几十、几百,甚至成干上万个电子元件制作在一块半导体片或绝缘片上。每种集成电路都有它独特的作用。有一种用得最多的集成电路叫门电路。常用的门电路有与门、非门、与非门。
2025-08-16 23:01:43 41KB 数字电路 与门电路
1
数字IC设计的一个新手项目,涵盖了从RTL(寄存器传输级)设计到门级电路布局的全过程。该项目基于40nm工艺,旨在实现一个SNN(Spiking Neural Network)加速器。文中不仅提供了详细的流程步骤和技术细节,还分享了许多实践经验,如Verilog代码优化、综合工具的使用技巧以及ICC2布局策略。此外,作者通过具体的案例展示了如何解决遇到的问题,如时序违规、拥塞区域优化和功耗管理。 适合人群:对数字IC设计感兴趣的初学者,尤其是希望深入了解RTL设计、综合、布局布线等环节的技术人员。 使用场景及目标:适用于希望通过实际项目掌握数字IC设计全流程的人群。目标是帮助读者理解并实践从RTL到门级电路布局的各个关键步骤,提高解决实际问题的能力。 其他说明:文章中包含了完整的Makefile和TCL脚本,便于读者进行自动化流程操作。同时,作者通过生动的语言和具体实例,使复杂的概念更加易懂。
2025-08-15 16:31:46 1.83MB
1
基于Vue.js和SpringBoot的美发门店管理系统,分为管理后台和用户网页端,可以给管理员、顾客角色使用,包括美容项目、项目预定、产品库存、产品入库、会员卡管理、会员卡充值模块和系统基础模块,项目编号T069。 项目录屏:https://www.bilibili.com/video/BV1hJ4m147DA 启动教程:https://www.bilibili.com/video/BV1pW4y1P7GR 项目讲解视频:https://space.bilibili.com/417412814/channel/collectiondetail?sid=2242844
2025-07-03 15:41:52 14.36MB java spring boot spring
1
门级仿真是一种在集成电路设计流程中至关重要的验证技术,它主要针对硬件描述语言(HDL)转换后的门级网表进行。VCS是Synopsys公司提供的一款强大的门级仿真工具,广泛应用于验证复杂的数字电路设计。本演讲将探讨如何使用VCS进行门级仿真并分享最佳实践。 一、门级仿真简介 门级仿真是一种模拟硬件实现的验证方法,它通过将RTL代码转化为等效的逻辑门级表示来进行。相比于RTL级别仿真,门级仿真的速度更快,因为门级模型比行为级模型更接近实际物理实现。此外,门级仿真对于检测时序问题和资源限制特别有用,尤其是在设计的后期阶段。 二、延迟与路径 在门级仿真中,理解和分析延迟至关重要。延迟包括组合逻辑延迟和时序路径延迟。组合逻辑延迟是指信号通过逻辑门的延迟时间,而时序路径延迟则涉及从一个触发器到另一个触发器的数据传输时间。这些路径可能是关键路径,影响整个设计的性能和时序合规性。 三、SDF文件语法 标准 Delay Format (SDF) 文件是门级仿真中的关键输入,用于描述电路的时序信息。SDF文件的格式规范了各种延迟类型和时序检查的信息。主要有以下几种延迟类型: 1. 组合延迟:描述信号通过逻辑门的延迟。 2. 时钟到输出延迟:从时钟边沿到门输出的时间。 3. 时钟路径延迟:时钟到达不同部分的时间差。 SDF文件还包含了定时检查,如建立时间和保持时间检查,确保设计满足时序约束。 四、定时检查 定时检查是确保设计满足时序要求的关键步骤。负面定时检查(Negative Timing Checks)用于检查是否存在可能导致数据早于预期到达的路径,这可能导致数据竞争或错误。这些检查可以帮助识别潜在的时序违规,从而在实际制造之前进行修复。 五、VCS选项及门级仿真优化 VCS提供了多种选项来优化门级仿真,包括: 1. 零延迟仿真优化:通过减少不必要的计算和内存占用,提高仿真速度。 2. SDF仿真优化:利用SDF文件的特性来提高仿真效率。 3. 调试工具:如分析SDF警告消息,帮助定位和解决问题。 4. 高级编译和运行时优化:包括并行执行、动态调度等技术,进一步提升仿真速度。 六、总结 门级仿真对于确保设计的正确性和时序合规性是必不可少的。VCS作为一款强大的仿真工具,提供了丰富的功能和优化选项,能够有效地加速仿真过程并确保设计质量。通过深入理解延迟、SDF文件和定时检查,以及熟练应用VCS的特性,设计者可以更高效地进行门级验证,从而降低设计风险,提高产品的可靠性。 问答环节可以进一步探讨特定的仿真挑战、VCS工具的使用技巧,以及如何解决在门级仿真过程中遇到的问题。
2025-06-25 22:51:41 1.42MB
1
基于Simulink的四驱电动汽车制动能量回收模型设计,融合逻辑门限值控制算法与最优制动能量回收策略,基于Simulink的四驱电动汽车再生制动与能量回收模型,含轮毂电机充电及电池发电系统,采用逻辑门限值控制算法,实现最优制动能量回收策略,针对前后双电机车型定制开发。,制动能量回收Simulink模型 四驱制动能量回收simulink模型 四驱电动汽车simulink再生制动模型 MATLAB再生制动模型 制动能量回收模型 电动车电液复合制动模型 原创 原创 原创 刹车回能模型 电机再生制动模型 目标车型:前后双电机电动汽车 轮毂电机电动汽车 模型包括:轮毂电机充电模型 电池发电模型 控制策略模型 前后制动力分配模型 电液制动力分配模型 输入模型(注:控制策略模型,因此整车参数以及仿真工况等均通过AVL_Cruise中进行导入) 控制策略:最优制动能量回收策略 控制算法:逻辑门限值控制算法 通过逻辑门限值控制算法,依次分配: 前轮制动力 后轮制动力 电机制动力 液压制动力 通过控制策略与传统控制策略对比可知,最优制动能量回收策略具有一定的优越性。 单模型:可运行出仿真图,业内人士首选
2025-06-23 19:41:00 806KB edge
1
在电力行业维护和监控中,电柜箱门把手作为关键部件,其状态的实时监测对于保障电力系统安全运行至关重要。目标检测技术在自动化监控系统中发挥着重要作用,能够实时识别并定位门把手的存在与状态。当前,随着深度学习技术的飞速发展,目标检测算法尤其是卷积神经网络(CNN)已被广泛应用于各种图像识别任务中。然而,算法训练需要大量的标注数据集作为支撑,因此高质量且领域相关的数据集成为研究与应用的基石。 本数据集的发布,为电力行业特定场景下目标检测任务提供了必要的工具和资源。该数据集包含1167张电力场景下电柜箱门把手的图片,每张图片都经过了精确的标注工作。数据集采用两种流行的目标检测格式——Pascal VOC格式和YOLO格式,提供了相应的标注信息。Pascal VOC格式包括jpg图片文件与对应的xml标注文件,而YOLO格式则包含txt文件,用于标注目标的中心点坐标和宽高信息。 标注过程中采用了labelImg这一广泛使用的标注工具,以矩形框的形式对目标进行标记。每张图片都对应一个xml文件和一个txt文件,分别用于存储VOC格式和YOLO格式的标注数据。标注类别仅有一个,名为"red",这是由于图片场景中电柜箱门把手的特征较为单一,统一归类为"red"。所有标注的矩形框总和为1164个,意味着在1167张图片中,绝大部分都成功标注了目标。 电力场景的特定性意味着这类数据集可能与通用数据集有所区别,场景可能相对单一,但这也是为了保证标注的准确性和一致性。图片示例清晰地展示了如何对电力场景下的电柜箱门把手进行标注,这对数据集的使用者来说具有很好的指导作用。 尽管数据集为电力行业目标检测提供了宝贵的资源,但需要特别强调的是,本数据集不对通过其训练所得的模型或权重文件的精度提供任何形式的保证。数据集的使用者在使用数据集进行模型训练时,需要保持谨慎的态度,对数据集的性质和应用场景有一个清晰的认识。此外,标注图片示例的提供,有助于用户更好地理解和掌握标注规则,以确保数据集在模型训练中发挥最大的效用。 这份数据集是电力行业目标检测研究领域的重要资源,它不仅为相关领域的研究者和工程师提供了大量经过精心标注的高质量图像,还为基于深度学习的目标检测模型训练提供了实践平台。通过使用该数据集,研究人员能够训练出更加精准的检测模型,从而为电力系统的自动化监控和维护贡献力量。同时,本数据集也展现了数据标注的重要性和专业性,为其他领域数据集的创建提供了参考。
2025-06-23 08:52:45 3.67MB 数据集
1