为更加真实地反映行人横穿马路时的轨迹,建立了基于 Markov 的行人运 动学模型,以此作为行人避撞的模型基础。 ② 针对横向避撞路径规划问题,提出了基于行人轨迹的转向避撞规划方法。 在已知行人轨迹的基础上,使用改进的弹性带对车辆的避撞路径进行规划,并通过 车辆与行人的可达性分析来判断避撞路径是否需要更新,提高了路径规划的安全 性。 ③ 将路径规划算法与 RRT 算法、人工势场路径规划算法进行比较,分析其在 路径平顺性、安全性等方面的优势。研究表明了弹性带规划算法在行人避撞路径规 划上的优越性。 ④ 基于模型预测控制和车辆动力学模型,对已规划好的路径进行横向跟踪控 制,并通过划分车辆避撞区域来对纵向避撞控制策略进行分析。根据避撞场景、行 人位置和行人横穿马路时间等指标,提出了车辆对行人避撞的纵横向控制切换策 略,完善了车辆在多种工况下的行人避撞需求。 ⑤ 为进一步验证所设计的行人避撞控制系统的有效性,搭建了基于 Prescan 和 Carsim、Matlab\Simulink 的联合仿真实验平台,通过多组行人横穿马路工况的 仿真实验,验证了该系统在纵向避撞和横向避撞控制上的鲁棒性和安全性。
首先,详细介绍了本论文的研究现状、研究意义以及智能车主动避撞技术的发展现 状,详细介绍了当前智能车辆路径规划和轨迹跟踪控制技术的相关方法以及各种方法的长处与不足。本文结合 PID 控制和模糊控制两种控制算法的优势,确定了用模糊自适应PID 轨迹跟踪控制器作为避撞模型的轨迹跟踪层,以克服单一的 PID 控制器参数不能在线调节的弊端。为避免出现极限情况下跟踪不好的问题,确定了 MPC 控制算法在轨迹跟踪层的应用。为解决智能车辆在动态环境下轨迹规划问题,论文选用了模型预测轨迹重规划算法作为轨迹规划层。 其次,以前轮转向的智能车为研究对象,建立了车辆坐标系,建立了二自由度的智 能车辆动力学方程。在研究轨迹跟踪问题的过程中,详细介绍了模糊 PID 轨迹跟踪控制器和 MPC 轨迹跟踪控制器的建立过程,并在 Matlab/Simulink 环境中分别对其跟踪效果进行仿真。结果显示在车速为 18km/h、36km/h 和 72km/h 时,对于不同的跟踪轨迹(直线和双移线),两者都有较理想的跟踪效果。然后,论文详细介绍了模型预测理论在动态环境中轨迹重规划的应用,并据此建立了智能车主动避撞模型的轨迹规划器。为满足实时性和鲁棒性的需要,论文轨迹规划层采用了计算量较少的点质量车辆模型。 最后,论文利用前面建立的模糊 PID 和 MPC 控制器分别作为轨迹跟踪层,利用模型预测动态轨迹规划器作为轨迹规划层,搭建了轨迹规划+轨迹跟踪的双层控制器作为智能车主动转向避撞模型。最后在 Matlab/Simulink 环境中分别对其避撞效果进行仿真,结果显示,当车速为 18km/h、36km/h 时,该模型有较好的避撞效果,并在避撞之后能够及时跟踪原来的轨迹行驶;但当车速为 72km/h 时,由于车速较高,障碍物信息过早的加入会导致智能车较早进行轨迹重规划并偏离原来轨迹,但整体上来说该避撞模型都实现了避撞的设计目标。论文选用的轨迹规划和跟踪算法都能满足智能车主动避撞技术的要求。
本文中针对复杂工况提出了一种集成主动制动和主动转向的紧急避撞策略。首先根据车速与地面附着系数,结合制动与转向安全距离模型,获得考虑前方障碍影响的转向与制动优先级。在此基础上,针对旁车道的其他交通要素,又将转向优先下的避撞模式细分为转向、制动和转向加制动3 种。对于转向避撞,采用五次多项 式进行路径规划,根据安全性和平滑性代价函数,综合优选出安全、平滑的期望路径,然后采用前馈加 LQR 反馈控制实现路径跟踪。通过驾驶员在环仿真验证所提出主动避撞算法的有效性。3 种典型工况下的试验结果表明,智能汽车能根据不同紧急工况做出合理避撞模式决策,并能顺利完成转向、制动和转向加制动的主动避撞操作。与Sigmoid 函数所生成的路径相比,基于五次多项式的规划路径更适合紧急避撞使用 。
2021-05-04 09:01:44 1.66MB 紧急避撞 路径规划 路径跟踪
讲解了纵向避障、换道避障、纵横向协同避障三种避障方式,以及他们的切换策略。这里采用的主要是以距离作为切换策略。
2021-04-30 09:02:10 2.52MB 纵向避障 换道避障 纵横向协同避障
纵向控制 横向控制 以及纵横向控制验证 采用TTC作为决策指标 验证采用dspace的软硬件工具搭建环境
2021-04-24 09:02:17 12.79MB 纵向控制 横向控制 纵横向验证