汽车BCM程序源代码 国产车BCM程序源代码 外部灯光:前照灯、小灯、转向灯、前后雾灯、日间行车灯、倒车灯、制动灯、角灯、泊车灯等 内部灯光:顶灯、钥匙光圈、门灯 前后雨刮、前后洗涤、大灯洗涤 遥控钥匙(RKE)、四门门锁、尾门开启 CAN LIN 通讯 ISO15765 诊断 网络管理
2025-11-17 23:37:48 215KB paas
1
汽车网络安全 ISO21434
2025-11-17 17:37:23 37.56MB 网络安全
1
内容概要:UN-R79法规旨在为道路车辆转向系统制定统一规定,涵盖传统机械转向系统和高级驾驶辅助转向系统(ADAS)。法规详细规定了转向系统的分类、性能要求、故障处理、认证流程及生产一致性要求。传统转向系统要求在转向操纵装置与转向轮之间保持可靠的机械连接,而新规允许采用无刚性机械连接的高级驾驶辅助转向系统,但仍需驾驶员保持对车辆的主导控制权。法规还特别强调了自动指令转向、校正转向、紧急转向等功能的具体要求,以及转向系统的故障处理机制和驾驶员干预机制。此外,法规明确了转向系统的测试方法和生产一致性核查流程,并对不同类别的车辆(如M、N、O类)提出了具体要求。 适用人群:汽车制造商、工程师、政策制定者、质量控制人员及相关行业从业者。 使用场景及目标:①确保车辆转向系统的可靠性与安全性,特别是在引入新技术的情况下;②为不同类型车辆(如乘用车、商用车)提供明确的转向系统设计和认证标准;③指导制造商进行转向系统的测试与生产一致性管理;④为政策制定者提供法规依据,以确保市场上的车辆符合安全标准。 其他说明:该法规不仅适用于传统转向系统,还涵盖了现代高级驾驶辅助系统,如车道保持、自动泊车
2025-11-12 14:02:31 909KB 自动驾驶技术 汽车工程
1
内容概要:本文档是德国标准DIN 70065的草案,规定了道路车辆中“线控转向(SbW)系统”的安全要求,适用于乘用车和轻型商用车。文档详细阐述了SbW系统的安全目标推导、系统可用性、首次故障下的可控性、故障后的运行行为(降级策略)等核心内容,明确了在发生故障时车辆应如何保持转向能力、可控性及安全状态。标准通过定义多种故障模式(如自行转向、转向能力失效、手力矩损失等)并结合驾驶操作测试(如直线行驶、蛇形绕桩、圆周行驶等)来评估系统的安全性,同时提出了降级状态(如受限行驶、蠕行、停车)和转换过程的具体要求,确保车辆在故障后能安全减速并最终停止。; 适合人群:从事汽车电子、智能驾驶、车辆安全系统研发的工程师、技术标准制定者、OEM主机厂及零部件供应商的技术人员。; 使用场景及目标:①为SbW系统的功能安全设计提供依据,确保符合ISO 26262等国际标准;②指导企业开展故障模式分析、可控性评估和降级策略验证;③支持整车企业在自动驾驶背景下构建安全可靠的转向系统架构。; 阅读建议:本标准为技术性规范文件,建议结合ISO 26262系列标准、车辆动力学知识及实际测试经验进行深入研读,重点关注故障模式矩阵、操作序列设计及验收标准,以便在产品开发中有效落地。
2025-11-12 11:18:54 2.72MB 汽车安全标准
1
汽车网络安全标准:21434+R155+R156+24089 随着汽车技术的快速发展,特别是智能网联汽车的普及,汽车安全面临越来越多的挑战。在此背景下,汽车网络安全成为全球关注的焦点,国际标准化组织和相关汽车工业协会纷纷制定标准,以指导和规范行业的安全实践。本文将详细介绍当前汽车网络安全领域中几个重要的标准:ISO/SAE 21434、WP29 UN R155、WP29 UN R156 和 ISO 24089,以及这些标准对汽车网络安全的推动作用。 ISO/SAE 21434是关于道路车辆—网络安全工程的国际标准,由国际标准化组织(ISO)和汽车工程师协会(SAE)联合发布。该标准涉及从概念阶段到汽车报废的整个生命周期内的网络安全风险管理,包括风险评估、网络安全要求、开发流程和车辆运营的网络安全管理。其目的在于为汽车网络安全提供一个全面的框架,确保车辆能够有效抵御网络攻击,并维持车辆功能的正常运作。 WP29 UN R155和WP29 UN R156则是联合国欧洲经济委员会(UNECE)世界车辆法规协调论坛(WP29)通过的两项关于汽车网络安全和软件更新的法规。UN R155要求汽车制造商和零部件供应商评估和管理与车辆相关的网络安全风险,并采取适当的措施以防止潜在的安全威胁。UN R156则关注软件更新,要求制造商提供远程和非远程的软件更新能力,以解决安全漏洞,增强汽车系统的功能和性能。这两项法规共同构成了欧洲市场对于汽车网络安全和软件更新的法律框架。 ISO 24089则是专门针对智能交通系统(ITS)的网络安全标准,它为智能交通系统中的网络安全风险管理提供了指导。该标准不仅覆盖了ITS网络中的设备和系统,还涉及相关的服务和通信过程,是确保智能交通系统安全的重要依据。 这些标准和法规的出台,为汽车行业的网络安全实践提供了明确的指导原则,要求制造商、软件供应商和技术服务提供商之间进行更紧密的合作。它们强调了跨部门协作的重要性,以及对供应链安全的管理。同时,这些标准的实施也将推动整个行业的安全技术发展,加速安全意识的普及和安全能力的提升。 随着汽车网络安全标准化进程的不断推进,未来汽车的安全性能将得到显著提升。这不仅有助于保护用户的人身和数据安全,也能够增加消费者对智能网联汽车的信任度,进一步推动汽车行业的健康发展。
2025-11-07 14:11:11 9.85MB 汽车网络安全 21434 R155
1
第25章 电机控制PWM 25.1 简介 电机控制 PWM(MCPWM)非常适用于三相交流 AC 和直流 DC 电机控制应用,但它还可 以用于其它需要通用定时、捕获和比较的应用中。 25.2 概述 MCPWM 含有 3 个独立的通道,每个通道包括:  1 个 32 位定时器/计数器(TC);  1 个 32 位界限寄存器(LIM);  1 个 32 匹配寄存器(MAT);  1 个 10 位死区时间寄存器(DT)和相应的 10 位死区时间计数器;  1 个 32 位捕获寄存器;  2 个极性相反的已调整的输出(MCOA 和 MCOB);  1 个周期中断、1 个脉宽中断和 1 个捕获中断。 输入引脚 MCI0-2 可触发 TC 捕获或使通道的计数值加 1。全局异常中断输入可强制所有通 道进入“有效”状态并产生一个中断。 25.3 引脚描述 表 25.1所示为MCPWM的引脚。 表 25.1 引脚汇总 引脚 类型 描述 MC0A0-2 O 通道 0-2,输出 A MC0B0-2 O 通道 0-2,输出 B MCABORT I 低电平有效的快速中止 MCFB0-2 I 输入 0-2 1
2025-11-07 10:46:39 25.58MB 1868
1
至死区时间计数器到达 0。在死区时间内,MCOA和MCOB输出电平都无效。图 25.4所示为带 死区时间的边沿对齐模式的操作,图 25.5所示为带死区时间的中心对齐模式的操作。 图 25.4 带死区时间的边沿对齐 PWM 的波形,POLA=0 15
2025-11-07 10:44:55 25.58MB 1868
1
### 电动汽车BMS中的主动均衡与被动均衡技术详解 #### 一、引言 随着电动汽车技术的迅猛发展,电池管理系统(Battery Management System, BMS)作为保障电动汽车安全性和可靠性的核心部件之一,其重要性日益凸显。在BMS中,电池组的均衡管理是一项关键技术,它直接影响着电池组的整体性能和使用寿命。目前,电动汽车BMS领域中主要有两种类型的均衡技术:主动均衡和被动均衡。这两种方法各有优缺点,并且针对不同的应用场景有着不同的适应性。 #### 二、被动均衡技术解析 ##### 1. 工作原理 被动均衡技术是一种较早应用于BMS的技术。其基本原理是通过消耗较高电压电池的能量来达到整个电池组内部电池电压一致性的目的。具体来说,当监测到某电池单元的电压高于设定阈值(例如对于三元锂电池而言,通常是4.2V)时,BMS系统会通过连接到该电池单元上的放电电阻来释放多余的电能,从而降低其电压至接近其他电池单元的水平。 ##### 2. 特点分析 - **优点**: - 结构简单,易于实现; - 成本较低; - 对于小型电池组效果较好。 - **缺点**: - 效率低下,能量以热能形式耗散,利用率不高; - 在大容量或电压差异较大的电池组中效果不佳,均衡速度慢; - 可能产生过热问题,需要额外的散热措施。 #### 三、主动均衡技术解析 ##### 1. 工作原理 与被动均衡不同,主动均衡技术通过能量转移的方式实现电池间的均衡。这意味着,它不仅能够减少高电压电池的能量,还能将这部分能量转移到电压较低的电池单元中,从而提高整体能量利用率。常见的实现方式包括使用电容或变压器进行能量传输。 ##### 2. 特点分析 - **优点**: - 高效节能,能量转移而非耗散,提高了系统的整体能效; - 均衡速度快,可以实现快速的能量调整; - 适用于大型电池组和高功率需求的应用场景。 - **缺点**: - 结构复杂,需要精密的控制逻辑和硬件设计; - 成本相对较高,增加了系统的复杂性和维护难度; - 控制难度较大,尤其是在涉及多个电池单元的情况下。 #### 四、均衡策略的选择与应用 选择合适的均衡策略对于BMS系统至关重要。在实际应用中,需要考虑电池组的具体情况以及电动汽车的工作环境等因素。 - **小容量、低串数电池组**:适合采用被动均衡技术,因其结构简单且成本较低。 - **大容量、高串数电池组**:更适合采用主动均衡技术,特别是对于电动汽车这类高功率需求的应用场景,主动均衡能够更好地满足均衡速度和效率的要求。 #### 五、结论 无论是主动均衡还是被动均衡,它们都是为了解决电池组内部不一致性问题而提出的解决方案。在实际应用中,应根据具体的电池组类型、工作条件以及成本预算等因素综合考虑,选择最合适的均衡策略。随着技术的发展,未来可能会出现更多高效、低成本的均衡技术,进一步推动电动汽车技术的进步。 通过深入理解主动均衡和被动均衡的特点及其应用场景,我们能够更好地把握BMS技术的发展趋势,为电动汽车领域的技术创新提供有力支持。
2025-11-03 15:19:49 84KB 电动汽车 主动均衡 被动均衡
1
VW 50180《大众汽车内饰空气质量标准》是一项由大众汽车集团制定的关键规范,旨在确保汽车内部环境的健康与安全。该标准详细规定了车内材料和组件的排放行为,尤其是对于那些直接接触乘客舱空气流动部分的低排放材料和组件。以下是基于标题、描述、标签以及部分内容对该标准的深入解析。 ### 标准概述 VW 50180标准最初发布于1996年5月,自那时起经历了多次更新和完善。截至2000年7月的版本,对原版进行了重大结构调整,并新增了关于天然皮革的例外批准条款。这一标准不仅限于大众品牌车辆,还适用于整个大众汽车集团旗下的所有车型,确保所有汽车内饰材料达到统一的安全和环保标准。 ### 关键内容 #### 范围与应用 VW 50180涵盖了对汽车内饰和后备箱内所有可能与乘客舱空气接触的材料和组件的评估准则。其核心在于推动使用低排放材料,减少有害物质如甲醛等在车内的释放,从而保护乘员健康,提升驾驶体验。 #### 基本规范 工程文件中必须标注“排放行为符合VW50180”,这是对材料选择的基本要求。任何新材料或设计变更都需遵循VW01155标准进行首次供货审批。此外,所有材料均应避免含有危险物质,具体参照VW91101标准执行。 #### 排放限制值 VW 50180设定了最低排放限值,这些限值是材料和组件必须满足的基本条件。无论是现有材料还是新开发的材料,其排放值若未达到要求,则被视为不合格。首次采样时,必须创建排放数据表(参见附件A),并附上相应材料数据,以确保透明度和可追溯性。 ### 特殊考量 标准中特别提到,对于天然皮革的使用,设有例外批准机制。这表明标准在坚持高标准的同时,也考虑到材料特性和实用性,为特定情况提供了灵活性。 ### 结论 VW 50180标准的制定和实施,体现了大众汽车集团对车内空气质量的高度关注和承诺。通过设定严格的排放限制和详细的测试程序,确保了汽车内饰材料不仅美观耐用,而且对人体健康无害,对环境保护负责。这一标准的持续更新和完善,反映了汽车工业在追求技术创新的同时,不忘对社会和自然环境的责任。 VW 50180不仅是大众汽车内饰材料选择的重要指南,也是全球汽车行业提升车内空气质量、保障消费者健康的典范。
2025-10-31 21:59:02 18KB
1
RH850 Green Hills Software 编程环境一共分成2个部分 1. IDE: MULTI工作界面 2. Compiler: 程序编译链 IDE 和 Compiler不用一一对应,但Compiler一定要对应原厂的需求。 比如 MCU需要的Compiler为201517,默认的安装的该版本Compiler的IDE为6.16 在安装MULTI 7.16后可通过muilt根目录下的.redirect_tools 来修改Compiler为201517即可。 除环境本身外,因芯片和调试的更新,往往要打入对应的Patch Patch的下载地址为: ToolWeb / MyPages | Renesas Electronics Europe Patch 分为3部分 EXEC 850eserv GHS Multi (对应不同的Compiler) 另外还有环境所需的MCU驱动文件 DVF文件。
2025-10-31 09:27:11 360.62MB 汽车电子
1