能完成所有题目要求,第(4)问单圈15s,还有优化空间
2024-08-01 02:40:49 548KB 循迹小车
1
由于小编没有电赛器材,所以就以STM32为主控,OpenMV摄像头巡线的方案进行演示2024电赛H题(视频演示请查看:https://blog.csdn.net/qq_67319052/article/details/140763678)。但控制方案、巡线原理都一样,都是通过控制黑线与中心线的偏差关系,只是电赛官方要求,不准用摄像头,但用灰度传感器也一样。通过灰度传感来获取偏差,灰度优点是点位准确,只是数据相对摄像头获取的较为离散,但用来控制,也完全足够了。 该方案基本可行,速度稳定且并未到达该车上限,需要进一步的优化控制逻辑,这里使用的是统一速度行驶,可采取变速行使,可进一步提高稳定性和减少整体耗时。其中使用的MPU6050存在零漂等,准确度不好,如能用算法解决,稳定性可进一步提高,其次该车的初始摆放位置较为重要, 初始角度为后续转向的参考。若采用四轮小车,只需将左边两轮和右边两轮进行分别同步即可,可能还需要微调参数。 控制的难点就在与ABCD四点之间的丝滑连接,如何让小车又快又稳的运行,最后比拼的就是时间了。
2024-07-31 15:02:57 27.45MB 巡线小车
1
【STM32F103C8T6微控制器】STM32F103C8T6是意法半导体(STMicroelectronics)推出的基于ARM Cortex-M3内核的微控制器,具有高性能、低功耗的特点。这款芯片拥有72MHz的工作频率,内置512KB闪存和48KB SRAM,适用于各种嵌入式应用,如本例中的智能小车。 【循迹系统】智能小车的循迹功能通常依赖于一组传感器,如红外线反射传感器或光电耦合器,用于检测地面的黑色线条或颜色差异。通过读取这些传感器的数据,微控制器可以计算出小车相对于赛道的位置,并通过PID(比例-积分-微分)算法调整电机速度,确保小车准确地沿着预设路径行驶。 【舵机控制】舵机是一种可精确控制角度的执行机构,广泛应用于机器人和模型制作。在智能小车上,舵机会被用于转向,通常连接到微控制器的PWM(脉宽调制)端口。STM32F103C8T6可以通过编程产生不同的PWM信号,从而控制舵机的角度变化。 【步进电机驱动】步进电机是一种能够实现精确位置控制的电机,其运动通过接收脉冲信号来控制。在智能小车上,步进电机可能用于驱动轮子,以实现高精度的移动。微控制器通过驱动步进电机的四相线圈,使得电机每次接收到一个脉冲就转动固定的角度。为了有效地驱动步进电机,需要使用合适的驱动电路,如H桥驱动器,同时微控制器需要有精准的时序控制能力。 【长征小车(课程思政场地)】这个名称可能指的是这个项目与长征系列火箭或者是中国的长征精神有关,也可能是在特定的教育环境下进行的课程项目。在这个场景下,智能小车的设计和实施不仅锻炼了学生的硬件设计和编程能力,还可能融入了爱国主义教育和科技创新的元素,让学生在实践中理解并传承长征精神。 总结,基于STM32F103C8T6的智能小车是一个集成了硬件设计、嵌入式软件开发以及控制系统理论的综合项目。它利用循迹技术保证小车按轨迹行驶,通过舵机实现转向,而步进电机则提供了精确的移动控制。此外,这个项目还可能融入了教育意义,使学生在学习过程中体会到科技与文化的融合。
2024-07-28 21:11:39 137.69MB stm32 智能小车 舵机 步进电机
1
智能小车传感器与转向关系(5个传感器)mixly巡线程序
2024-07-17 18:37:02 53KB
1
大一暑假制作的一个循迹小车,使用STM32CUBEMX配置引脚和串口,定时器中断等,通过OPENMV获取色块坐标,通过串口通信将数据传给STM32,STM32将数据进行解析,获取色块坐标,小车使用的是阿克曼结构,转向通过舵机实现,后轮速度使用PID控制保持恒定,色块坐标和舵机转向不是线性对应,也采用PID控制,使用并行PID达到小车速度恒定,转向丝滑,PID每10ms执行一次
2024-07-16 16:14:42 4.94MB stm32 HAL库 OPENMV 循迹小车
1
STM32是一款基于ARM Cortex-M内核的微控制器,由STMicroelectronics公司生产。在本项目中,我们利用STM32CubeMX配置工具和HAL库来开发一款具有超声波避障功能的智能小车。STM32CubeMX是STM32微控制器的配置和初始化工具,它提供了图形化界面,方便用户快速设置系统时钟、外设接口以及引脚复用等功能,大大简化了开发流程。 HAL(Hardware Abstraction Layer)库是STM32官方提供的一种面向对象的驱动库,它将底层硬件操作封装成了统一的接口,使得开发者可以专注于应用层的逻辑编写,而无需过多关注底层硬件细节。在这个项目中,HAL库被用于管理STM32的各种外设,如GPIO、TIM(定时器)、USART(串口通信)以及I2C(用于可能存在的传感器连接)等。 避障小车的核心功能包括以下几个部分: 1. **引脚分配表**:STM32的GPIO引脚需要正确配置以驱动电机、舵机和超声波传感器。引脚模式(输入/输出、推挽/开漏、速度等级等)和中断功能需要在STM32CubeMX中设置。例如,电机控制可能需要用到PWM输出,舵机控制通常通过GPIO的模拟脉宽调制实现。 2. **舵机控制**:舵机会根据接收到的脉冲宽度调整其转动角度,从而改变小车的方向。在STM32中,可以通过定时器配置PWM信号来控制舵机。HAL库提供API函数如HAL_TIM_PWM_Init()和HAL_TIM_PWM_PulseFinishedCallback(),用于初始化定时器和处理PWM脉冲。 3. **超声波数据接收**:超声波传感器(如HC-SR04)通过发送和接收超声波脉冲来测量距离。在STM32上,超声波的发射和接收通常通过GPIO控制。发送一个触发脉冲启动传感器,然后使用定时器检测回波时间。HAL_GPIO_WritePin()和HAL_GPIO_ReadPin()函数用于控制GPIO状态,而HAL_TIM_Encoder_Init()和HAL_TIM_Encoder_Start_IT()可以用于精确计时。 4. **避障算法**:根据超声波传感器返回的距离数据,小车需要有决策机制来判断是否需要避障。这可能涉及到简单的阈值判断,或者更复杂的路径规划算法。一旦检测到前方障碍物,可以通过控制舵机调整小车方向,或通过改变电机速度来避开。 5. **串口通信**:为了调试和监控小车状态,可能需要通过USART与PC或其他设备进行通信。HAL库的HAL_UART_Init()和HAL_UART_Transmit()等函数可以实现串口的初始化和数据发送。 6. **软件架构**:项目可能采用模块化设计,每个功能如电机控制、超声波测距、舵机控制等都有独立的函数或类。这样有利于代码的可读性和维护性。 通过以上介绍,我们可以看出,基于STM32CubeMX和HAL库的开发方式让开发智能小车的过程更加高效和便捷,同时保持了代码的可移植性和扩展性。对于初学者和经验丰富的开发者来说,都是一个很好的实践平台。
2024-07-07 15:07:51 38.67MB stm32
1
在视觉检测领域,Python结合OpenCV库以及ROS(Robot Operating System)系统,是实现无人小车自主导航的重要技术栈。本文将深入探讨如何利用这些工具进行障碍物检测,以确保小车安全、有效地行驶。 OpenCV是计算机视觉领域的强大库,它提供了丰富的图像处理和模式识别功能。在Python中,我们可以利用OpenCV读取摄像头输入的视频流,对每一帧图像进行处理。例如,可以使用`cv2.VideoCapture()`函数打开摄像头,并用`read()`方法获取每一帧图像。为了检测障碍物,通常会涉及到图像预处理,如灰度化、直方图均衡化、滤波等步骤,以提升后续特征提取的效果。 接下来,是特征检测和识别阶段。OpenCV提供多种算法,如边缘检测(Canny、Sobel)、轮廓检测、霍夫变换等,用于寻找可能代表障碍物的特征。例如,可以使用Canny边缘检测算法找到图像中的边缘,然后根据边缘的分布和形状判断是否存在障碍物。此外,还可以使用模板匹配或特征匹配(如SIFT、SURF)来识别特定的障碍物。 ROS是机器人软件开发的开源框架,它为不同模块间的通信提供了一套标准接口。在无人小车项目中,我们可以通过ROS节点发布和订阅消息,实现视觉检测与小车控制的交互。例如,创建一个ROS节点用于处理OpenCV的图像数据,然后将检测到的障碍物信息通过`geometry_msgs/PoseStamped`或`sensor_msgs/PointCloud2`等消息类型发布出去。其他节点,如路径规划和避障算法,可以订阅这些消息,据此做出决策。 为了在ROS环境中运行Python脚本,我们需要使用`rospy`库,它提供了ROS与Python的接口。`rospy.init_node()`初始化ROS节点,`rospy.Subscriber()`订阅消息,`rospy.Publisher()`发布消息。同时,我们还需要将OpenCV的图像数据转换为ROS的消息格式,例如,使用`cv_bridge`库进行图像数据的转换。 在实际应用中,我们可能还会涉及到实时性优化,例如,通过多线程或异步处理提高处理速度,确保小车能快速响应环境变化。同时,为了适应不同的光照条件和环境背景,可能需要训练更复杂的模型,如深度学习的卷积神经网络(CNN),来提升障碍物检测的准确性和鲁棒性。 通过Python的OpenCV库进行视觉处理,结合ROS系统实现信息的发布和订阅,我们可以构建出一套有效的无人小车障碍物检测系统。这个系统不仅可以检测静态障碍,还能识别动态物体,为无人小车的自主导航提供关键信息。在实践中,我们需要不断优化算法和参数,以适应实际场景的需求,确保小车安全、高效地运行。
2024-07-03 12:39:44 6KB opencv 视觉检测 python
1
基于51单片机遥控小车Proteus仿真
2024-07-01 17:08:07 9.61MB
1
单片机智能小车设计 智能小车作为一种复杂的系统控制和高级智能控制系统,通过自动化实现更大规模的自动化。智能小车主要由路径识别、速度采集、车速控制等模块组成,可以应用于无人驾驶机动车,无人生产线、服务等领域。 在本设计中,我们采用STC89C51单片机作为小车的检测和主控芯片,充分利用了自动检测技术、单片机最小系统、液晶显示模块电路、串口无线通信,以及声光信号的控制、电机的驱动电路。通过Keil C软件编程,不断调试,最终实现小车的无线控制、壁障等功能。 本设计的_smart car_主要有无线控制、壁障等多种功能,初步实现智能化,可以作为智能化研究的模型,具有较大的研究空间,适合于多种领域的智能化研究及开发。 1. 主控系统及驱动系统 主控系统是智能小车的核心部分,负责小车的控制和决策。STC89C51单片机作为小车的检测和主控芯片,具有高性能、低功耗、多任务处理等特点,适合于智能小车的控制系统。 驱动系统是智能小车的执行机构,负责小车的运动和控制。电机及驱动芯片的选择是驱动系统的关键,需要考虑电机的型号、输出功率、效率等因素,同时也需要考虑驱动芯片的选择,确保驱动系统的稳定性和可靠性。 2. 无线控制系统 无线控制系统是智能小车的核心技术,实现小车的远程控制和自动化。蓝牙模块是无线控制系统的关键组件,负责小车与远程控制器之间的通信。蓝牙模块的选择需要考虑蓝牙协议、频率、输出功率等因素,确保蓝牙模块的稳定性和可靠性。 通讯模块是无线控制系统的另一个关键组件,负责小车与远程控制器之间的数据传输。通讯模块的选择需要考虑通讯协议、频率、输出功率等因素,确保通讯模块的稳定性和可靠性。 智能小车的设计需要考虑多方面的因素,包括自动检测技术、单片机最小系统、液晶显示模块电路、串口无线通信,以及声光信号的控制、电机的驱动电路等。通过Keil C软件编程,不断调试,最终实现小车的无线控制、壁障等功能。 智能小车的应用前景非常广阔,可以应用于无人驾驶机动车,无人生产线、服务等领域。尤其是在危险和未知的环境下,智能小车的优势更为明显。本设计为智能小车的设计和实现提供了有价值的参考和借鉴。
2024-06-19 22:55:18 821KB
1
一个简单的智能小车的Python源代码+路径规划: 1、传感器数据采集:使用传感器(如摄像头、超声波传感器等)采集环境信息,例如道路图像、障碍物距离等。这些数据将用于路径规划和决策控制。 2、路径规划:路径规划是为智能小车选择最佳行驶路径的过程。其中最常用的算法是A算法。首先,将环境建模为图,然后根据图的拓扑结构和权重等信息,使用A算法找到从起点到终点的最短路径。 3、决策控制:基于路径规划的结果和传感器数据,智能小车需要做出决策,如前进、停止、转弯等。这一步通常利用机器学习或逻辑控制等方法来实现。
2024-06-05 19:54:03 2.25MB python 路径规划
1