中文翻译Introduction to Linear Algebra, 5th Edition 7.3节,仅用于交流学习! 本节阐述 SVD 在统计学与数据分析中的一个主要应用。我们的示例将来源于人类遗传、面部识别 及金融。问题在于理解一个大的数据矩阵(= 测量值) 。对 n 个样本的每一个,我们测量 m 个变量。数 据矩阵 A 0 具有 n 列和 m 行。 通过图像,A 0 的列是 R m 里的 n 个点。在我们减去各行的平均值后得到 A,其 n 个点通常沿着 一条直线或接近一个平面(或 R m 的其它低维子空间)聚集。这条直线或平面或子空间是什么? 允许我从一个图片而不是数字开始。对于如年龄和身高的 m = 2 个变量,其 n 个点位于 R 2 平面。 减去平均年龄和平均身高来中心化数据。假设 n 个中心化后的点沿某条直线聚集,那线性代数如何找 出那条直线呢?
2022-05-18 19:08:04 1.38MB 综合资源 线性代数
1
1. Introduction and Descriptive Statistics for Exploring Data 2. Producing data and sampling 3. Probability 4. Normal Approximation and binomial distribution 5. Smapling distribution and teh central limit theorem 6. Regression 7. Confidence Intervals 8. Tests of Significance 9. Resampling 10. Analysis of Categorical data 11. One-way analysis of Variance (ANOVA) 12. Multiple comparisons
2022-05-18 09:09:09 10.03MB 机器学习 概率 统计 斯坦福
1
这是 《算法导论第3版》英文版 Introduction-to-algorithm-3rdEdition(非扫描版)是一本十分经典的计算机算法书籍,与高德纳(Donald E.Knuth)的《计算机程序设计艺术》(《The Art Of Computer Programming》)相媲美。
2022-05-18 07:44:54 8.83MB 非扫描版
1
多元统计分析的绝佳教材,第三版了,斯坦福大学Aderson经典之作
2022-05-17 15:12:09 6.14MB Multivariate Statistical Analysis
1
介绍人工神经元网络的书,理论概念比较详细
2022-05-16 20:27:29 4.36MB Neural Networks
1
第一章:介绍机器学习研究的总体思路,发展历史与关键问题; 第二章:介绍线性模型,包括线性预测模型,线性分类模型和线性高斯概率模型; 第三章:介绍神经网络的基础知识、基础结构和训练方法; 第四章:介绍深度神经网络的基础方法和最新进展; 第五章:介绍核方法,特别是支持向量机模型; 第六章:介绍图模型的基本概念和基于图模型的学习和推理方法; 第七章:介绍无监督学习方法,特别是各种聚类方法和流形学习; 第八章:介绍非参数贝斯模型,重点关注高斯过程和狄利克雷过程; 第九章:介绍遗传算法、遗传编程、群体学习等演化学习方法; 第十章:介绍强化学习,包括基础算法及近年来兴起的深度强化学习方法; 第十一章:介绍各种数值优化方法。
2022-05-13 16:05:31 16.67MB 人工智能 机器学习 machine learning
1
Introduction to Recursive Programming 英文无水印pdf pdf所有页面使用FoxitReader和PDF-XChangeViewer测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 本资源转载自网络,如有侵权,请联系上传者或csdn删除
2022-05-12 15:50:26 10.24MB Introduction Recursive Programming
1
这是关于电路导论的电子书,高清,最新版本,经典著作,英文版
2022-05-12 15:07:20 9.7MB Electric Cir
1
Introduction to Python Programming is written for students who are beginners in the field of computer programming. This book presents an intuitive approach to the concepts of Python Programming for students. This book differs from traditional texts not only in its philosophy but also in its overall focus, level of activities, development of topics, and attention to programming details. The contents of the book are chosen with utmost care after analyzing the syllabus for Python course prescribed by various top universities in USA, Europe, and Asia. Since the prerequisite know-how varies significantly from student to student, the book’s overall overture addresses the challenges of teaching and learning of students which is fine-tuned by the authors’ experience with large sections of students. This book uses natural language expressions instead of the traditional shortened words of the programming world. This book has been written with the goal to provide students with a textbook that can be easily understood and to make a connection between what students are learning and how they may apply that knowledge. Features of this book This book does not assume any previous programming experience, although of course, any exposure to other programming languages is useful This book introduces all of the key concepts of Python programming language with helpful illustrations Programming examples are presented in a clear and consistent manner Each line of code is numbered and explained in detail Use of f-strings throughout the book Hundreds of real-world examples are included and they come from fields such as entertainment, sports, music and environmental studies Students can periodically check their progress with in-chapter quizzes that appear in all chapters
2022-05-11 22:11:29 14.11MB Python
1
Introduction to Fourier Optics 2nd-Goodman
2022-05-09 22:35:46 9.37MB Introduction to Fourier Optics
1