中文翻译Introduction to Linear Algebra, 5th Edition 7.3节

上传者: sinat_21706867 | 上传时间: 2022-05-18 19:08:04 | 文件大小: 1.38MB | 文件类型: PDF
中文翻译Introduction to Linear Algebra, 5th Edition 7.3节,仅用于交流学习! 本节阐述 SVD 在统计学与数据分析中的一个主要应用。我们的示例将来源于人类遗传、面部识别 及金融。问题在于理解一个大的数据矩阵(= 测量值) 。对 n 个样本的每一个,我们测量 m 个变量。数 据矩阵 A 0 具有 n 列和 m 行。 通过图像,A 0 的列是 R m 里的 n 个点。在我们减去各行的平均值后得到 A,其 n 个点通常沿着 一条直线或接近一个平面(或 R m 的其它低维子空间)聚集。这条直线或平面或子空间是什么? 允许我从一个图片而不是数字开始。对于如年龄和身高的 m = 2 个变量,其 n 个点位于 R 2 平面。 减去平均年龄和平均身高来中心化数据。假设 n 个中心化后的点沿某条直线聚集,那线性代数如何找 出那条直线呢?

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明