针对传统Q-learning算法在复杂环境下移动机器人路径规划问题中容易产生维数灾难的问题,提出一种改进方法。该方法将深度学习融于Q-learning框架中,以网络输出代替Q值表,解决维数灾难问题。通过构建记忆回放矩阵和双层网络结构打断数据相关性,提高算法收敛性。最后,通过栅格法建立仿真环境建模,在不同复杂程度上的地图上进行仿真实验,对比实验验证了传统Q-learning难以在大状态空间下进行路径规划,深度强化学习能够在复杂状态环境下进行良好的路径规划。
1
内容包含Easy-RL的200页PDF,入门深度强化学习170页PPT,lecture-alphastar76页PDF.
2021-05-28 21:05:37 107.87MB RL DRL 强化学习 深度强化学习
1
深度强化学习主要被用来处理感知-决策问题,已经成为人工智能领域重要的研究分支。概述了基于值函数和策略梯度的两类深度强化学习算法,详细阐述了深度Q网络、深度策略梯度及相关改进算法的原理,并综述了深度强化学习在视频游戏、导航、多智能体协作以及推荐系统等领域的应用研究进展。最后,对深度强化学习的算法和应用进行展望,针对一些未来的研究方向和研究热点给出了建议。
2021-05-21 15:18:32 2.92MB 深度强化学习 研究综述
1
基于深度强化学习控制的节能热模拟加热系统设计
2021-05-13 20:02:48 6.42MB 强化学习
1
基于深度迁移学习的小样本图像分类matlab程序,网络模型基于AlexNet,文件包含了图像数据集,输出结果可靠。
2021-05-13 09:07:22 370KB matlab AlexNet 图像数据集
扑克RL 扑克游戏中的多智能体深度强化学习框架。 背景 解决不完善的信息游戏的研究主要围绕直到最近才遍历整个游戏树的方法(例如,请参见 , , )。 神经虚拟自我播放(NFSP) ,后悔策略梯度(RPG) ,深反事实后悔最小化(Deep CFR) 和单深CFR 等新算法最近将深(强化)使用常规方法(例如CFR和虚拟游戏)进行学习,以仅在访问游戏状态的一小部分时即可了解近似的纳什均衡。 PokerRL框架 PokerRL算法的组成部分 您的算法由相互交互的工作人员(绿色)组成。 训练运行的参数通过TrainingProfile的实例( .../rl/base_cls/Training
2021-05-12 11:04:25 325KB framework research reinforcement-learning poker
1
主动学习试图在具有尽可能少标注样本的同时最大化模型的性能增益。深度学习(Deep learning, DL)需要大量标注数据,如果模型要学习如何提取高质量的特征,就需要大量的数据供应来优化大量的参数。
2021-05-11 11:42:49 1.21MB 主动学习
1
为促进居民用户柔性负荷高效参与需求响应,帮助 用户从被动角色转变为主动角色,实现需求侧最大效益。本文在智能电网环境下,根据用电设备的特性,以概率论 的角度对家电设备状态进行描述定义,基于异步深度强化 学习(asynchronous deep reinforcement learning,ADRL)进 行家庭能源管理系统调度的在线优化。学习过程采用异步 优势演员-评判家(asynchronous advantage actor-critic, A3C)方法,联合用户历史用电设备运行状态的概率分布, 通过多智能体利用CPU 多线程功能同时执行多个动作的 决策。该方法在包括光伏发电、电动汽车和居民住宅电器 设备信息的某高维数据库上进行仿真验证。最后通过不同 住宅情境下的优化决策效果对比分析可知,所提在线能耗 调度策略可用于向电力用户提供实时反馈,以实现用户用 电经济性目标。
1
压缩文件中有两个.py文件,分别为深度强化学习的交叉熵优化方法和策略优化方法的完整代码,readme文件中提供的资料中有具体的操作细节以及算法解释
2021-05-08 17:04:12 8KB 深度强化学习
1
本文研究并借鉴了深度 Q 网络的结构,借鉴其使用一个神经网络处理图像输入并计算行动价值函数,将深度学习与增强学习结合。根据路径规划问题的特殊性设计了一个全卷积神经网络,并引入注意力机制优化网络结构。其次,针对神经网络在处理多步决策、规划问题上的短板,参考价值迭代网络,在神经网络模型的基础上引入价值迭代模块。对价值迭代模块进行解构分析,提出改进的价值迭代模块,解决了引入价值迭代模块造成的误差累积问题。最后,将神经网络表征的行动价值函数分解为状态价值函数与优势函数之和,形成竞争神经网络结构,至此完成神经网络的构建。本文使用 2D 栅格环境,使用专家样本取代传统增强学习中的代理经历,以模仿学习方式加速模型训练。通过算法在最短路径规划问题上的表现衡量算法效能。