DeepSpeech:DeepSpeech是一种开源嵌入式(离线,设备上的)语音到文本引擎,可以在从Raspberry Pi 4到大功率GPU服务器的各种设备上实时运行
2023-03-15 21:18:57 6.19MB machine-learning embedded deep-learning offline
1
Algebra, Topology, Differential Calculus, and Optimization TheoryFor Computer Science and Machine LearningJean Gallier and Jocelyn Quaintance Department of Computer and Information ScienceUniversity of Pennsylvania Philadelphia, PA 19104, USA e-mail: jean@cis.upenn.educ:copyright: Jean GallierAugust 2, 20192ContentsContents 31 Introduction 172 Groups, Rings, and Fields 19 2.1 Groups, Subgroups, Cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Cyclic Groups . . . . . . . . . .
2023-03-15 20:47:53 19.85MB Papers Specs Decks Manuals
1
班级增量学习 文件 用于班级增量学习的自适应聚合网络,CVPR2021。[ ] [] 助记符训练:无需忘记的多级增量学习,CVPR2020。[ ] [] 引文 如果它们对您的工作有帮助,请引用我们的论文: @inproceedings { Liu2020AANets , author = { Liu, Yaoyao and Schiele, Bernt and Sun, Qianru } , title = { Adaptive Aggregation Networks for Class-Incremental Learning } , booktitle = { The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) } , year = { 20
1
对抗图书馆 该库包含与PyTorch中实施的对抗性攻击有关的各种资源。 它针对寻求最新攻击实施方案的研究人员。 编写代码是为了最大程度地提高效率(例如,通过偏爱PyTorch的底层函数),同时保持简单性(例如,避免抽象)。 因此,大多数库(尤其是攻击)都是使用纯函数实现的(只要有可能)。 在着重于攻击的同时,该库还提供了一些与对抗性攻击有关的实用程序:距离(SSIM,CIEDE2000,LPIPS),可见回调,预测,损失和辅助功能。 最值得注意的是,来自utils/attack_utils.py的功能run_attack对具有给定输入和标签且具有固定批处理大小的模型进行了攻击,并报告了与复杂性相关的指标(运行时和向前/向后传播)。 依存关系 该库的目标是使用最新版本的PyTorch进行更新,以便可以定期更新依赖项(可能会导致重大更改)。 pytorch> = 1.7.0 火炬视觉>
1
用于学习分子图的分层消息间传递 这是用于学习分子图的分层消息间传递的 PyTorch 实现,如我们的论文中所述: Matthias Fey、Jan-Gin Yuen、Frank Weichert:(GRL+ 2020) 要求 (>=1.4.0) (>=1.5.0) (>=1.1.0) 实验 可以通过以下方式运行实验: $ python train_zinc_subset.py $ python train_zinc_full.py $ python train_hiv.py $ python train_muv.py $ python train_tox21.py $ python train_ogbhiv.py $ python train_ogbpcba.py 引用 如果您在自己的工作中使用此代码,请引用: @inproceedings{Fey/etal/2020,
1
对 Deep convolutional network cascade for facial point detection[CVPR13]一文的复现,可演示的可执行文件。 目前只实现了第一层。
2023-03-14 22:14:38 8.61MB 深度学习 deep learning 人脸标注
1
Hands-On Machine Learning with Scikit-Learn and TensorFlow.zip
2023-03-14 21:00:29 42.59MB Machine Learning
1
超网络 适用于ResNet的PyTorch实施(Ha等人,ICLR 2017)。该代码主要用于CIFAR-10和CIFAR-100,但是将其用于任何其他数据集都非常容易。将其用于不同深度的ResNet架构也非常容易。 我们使用pytorch闪电来控制整个管道。 怎么跑 python train.py --dataset {cifar10/cifar100} --gpus $num_gpu -j $num_workers --distributed_backend ddp 已过期。此回购协议已将HyperNet修改为逐层实施,使用起来更加方便。需要注意的是,我们发现尽管作者设置了in_size和out_size 。实际上,您应该将in_size和out_size设置为16,否则将失败。
1
Deep Learning with PyTorch,介绍了PyTorch在深度学习上的应用。
2023-03-14 14:54:56 9.37MB deep learnin pytorch
1
主成分回归代码matlab及示例机器学习(Coursera) 这是我对Andrew Ng教授的所有机器学习(Coursera)编程任务和测验的解决方案。 完成本课程后,您将对机器学习算法有一个广泛的了解。 首先尝试自己解决所有任务,但是如果您陷入困境,请随时浏览代码。 内容 讲座幻灯片 编程分配的解决方案 解决测验 斯坦福大学的吴安德(Andrew Ng) 第一周 视频:简介 测验:简介 视频:具有一个变量的线性回归 测验:具有一个变量的线性回归 第二周 视频:具有多个变量的线性回归 测验:具有多个变量的线性回归 视频:八度/ Matlab教程 测验:八度/ Matlab教程 编程分配:线性回归 第三周 视频:Logistic回归 测验:逻辑回归 视频:正则化 测验:正则化 编程分配:逻辑回归 第四周 视频:神经网络:表示 测验:神经网络:表示形式 编程作业:多类分类和神经网络 第五周 视频:神经网络:学习 测验:神经网络:学习 编程作业:神经网络学习 第六周 视频:应用机器学习的建议 测验:应用机器学习的建议 视频:编程分配:正则线性回归和偏差/方差 机器学习系统设计 测验:机器学习
2023-03-14 10:59:50 73.39MB 系统开源
1