数据科学研讨会 这是出版的的资料库。 它包含从头到尾完成该课程所必需的所有支持项目文件。 要求和设置 要开始使用项目文件,您需要: 设定 关于数据科学研讨会 为您提供了开始从事各种数据科学项目所需的基本技能。 本书将逐步介绍数据科学项目的基本组成部分,然后将所有部分放在一起以巩固您的知识并在现实世界中应用您的知识。 您将学到什么 探索有监督学习与无监督学习之间的主要区别 使用scikit-learn和pandas库处理和分析数据 了解关键概念,例如回归,分类和聚类 探索先进的技术来提高模型的准确性 了解如何加快添加新功能的过程 简化您的机器学习工作流程以进行生产 相关工作坊 如果您发现此存储库很有用,则可能需要查看我们的其他一些研讨会标题: 应用TensorFlow和Keras研讨会
2022-07-06 18:43:48 160.03MB python machine-learning random-forest regression
1
Abdullah Karasan - Machine Learning for Financial Risk Management with Python_ Algorithms for Modeling Risk-O'Reilly Media (2022)
2022-07-05 20:36:00 3.59MB 机器学习 python 人工智能 开发语言
1
利用人工智能预测心脏病死亡率 python machine learning deep learning
吴恩达Coursera, 机器学习专项课程, Machine Learning:Supervised Machine Learning: Regression and Classification第一周所有jupyter notebook文件(包括实验室练习文件)
2022-07-04 19:10:00 1.64MB 吴恩达-ML-新课代码
1
Coursera, 机器学习专项课程, Machine Learning:Supervised Machine Learning: Regression and Classification第二周所有jupyter notebook文件(包括实验室练习文件)
2022-07-04 19:09:56 3.68MB ML-新课代码
1
吴恩达Coursera, 机器学习专项课程, Machine Learning:Supervised Machine Learning: Regression and Classification第三周所有jupyter notebook文件(包括实验室练习文件)
2022-07-03 12:05:19 2.69MB 吴恩达-ML-新课代码
1
机器学习基础知识课件,适用于高年级本科生和低年级研究生。
2022-07-02 15:13:38 9.43MB 机器学习 ,machine learning
1
信用卡欺诈检测 使用Logstic Regression对信用卡欺诈检测进行分类 步骤以及一些需要注意的点 特征工程 样本不均衡问题的解决(降采样以及过采样两种方式) 下采样策略 交叉验证(充分利用数据,使模型可以说服力) 模型评估方法(分类准确率,精确率,召回率,F1值) 正则化惩罚(防止模型过拟合,日期L2正则化) 逻辑回归阈值对结果的影响(通过重复矩阵​​的可视化以及召回率来体现) 过采样策略(SMOTE算法) 如何运行? 信用卡数据集为“ creditcard.csv”,地址为: ://myblogs-photos-1256941622.cos.ap-chengdu.myqcloud
1
基于人脸识别的考勤系统 详细项目在这里工作... 该项目包含两个使用flask和python3开发的webapp。( ) 使用的数据库:MySQL社区版。 对于面部识别,我使用了ageitgey的python3“ face_recogntion”。( ),它是使用dlib先进的面部识别技术构建而成的,该面部识别技术是通过深度学习构建的。 该模型在Wild基准中的Labeled Faces上的准确性为99.38%。 为了进行欺骗检测,我通过重新训练它的最后一层来使用tensorflow初始模型,以便它可以检测图像中的手机。( ) 为了生成和管理Excel,我使用了xlrx,xl
2022-07-01 13:55:55 85.62MB flask machine-learning web-app python3
1
UBC Mark Schmidt讲授 这是Mark Schmidt在UBC教机器学习的各种课程的课程材料的集合,包括100多个讲座的材料,涵盖了大量与机器学习相关的主题。 这是在 UBC 教授的有关机器学习的各种课程的课程资料合集,其中包括来自 100 多场讲座的资料,涵盖了大量与机器学习相关的主题。主题的符号相当一致,这使得更容易看到关系,并且主题应该按顺序进行(难度慢慢增加,概念在第一次出现时就被定义)。
2022-06-29 09:13:30 235.65MB 机器学习