Essentials Of Computer Organization And Architecture
2022-03-16 09:04:53 17.85MB 计算机组成
1
PyTorch随机擦除的实现 用法 $ python main.py --block_type basic --depth 110 --use_random_erase --random_erase_prob 0.5 --random_erase_area_ratio_range '[0.02, 0.4]' --random_erase_min_aspect_ratio 0.3 --random_erase_max_attempt 20 --outdir results CIFAR-10的结果 模型 测试错误(5次运行的中位数) 训练时间 没有随机擦除的ResNet-preact-56 5.85 98分钟 ResNet-preact-56 w /随机擦除 5.22 98分钟 没有随机擦除 $ python -u main.py --depth 56 --block_type b
2022-03-15 17:39:16 512KB computer-vision pytorch cifar10 Python
1
Computer networks 习题答案中文版
2022-03-15 11:15:35 4.15MB computer networks 习题答案
1
最初的以太网设计论文,由Robert M. Metcalfe和David R. Boggs完成。施乐帕洛阿尔托研究中心提供支持。
2022-03-14 10:51:57 1.93MB 以太网 分布式 包交换 原始
1
计算机专业必读,顶级计算机学校CMU出的CSAPP,深入理解计算机系统, 第三版英文原版,最新版,很不容易从国外网站扒来的,望珍惜。
2022-03-13 20:45:19 35.93MB CSAPP CS Computer Systems,
1
Computer Systems:A Programmer's Perspective written by Randal E. Bryant,etc.
1
CycleGAN_ssim 该项目是项目的扩展。 实现和训练有素的周期一致剖成对抗性网络(CycleGAN)如在所描述的具有不同的,具体地SSIM损失,损耗L1,L2损失和它们的组合,以产生更好的视觉质量的图像。 图1:CycleGAN工作 对于CycleGAN实现与L1损失是指。 对于官方CycleGAN执行读取。 先决条件 Python 3.3以上 Tensorflow 1.6+ 枕头(PIL) (可选) 用法 训练模型: > python train_cycleGAN_loss.py --data_path monet2photo --input_fname_pattern .jpg --model_dir cycleGAN_model --loss_type l1 data_path:具有trainA和trainB文件夹的目录的路径(具有这些特定名称(trainA,tra
1
带有OpenCV和CUDA的动手GPU加速计算机视觉 Packt发布的具有OpenCV和CUDA的动手GPU加速计算机视觉 这是Packt发布的的代码存储库。 **使用GPU实时处理复杂图像数据的有效技术** 这本书是关于什么的? 计算机视觉已在各行各业发生了革命性变化,OpenCV是计算机视觉中使用最广泛的工具,它能够以多种编程语言工作。 如今,在计算机视觉中,需要实时处理大图像,这对于OpenCV本身很难处理。 这就是CUDA发挥作用的地方,它使OpenCV可以利用功能强大的NVDIA GPU。 本书详细介绍了将OpenCV与CUDA集成以用于实际应用。 本书涵盖了以下令人兴奋的功能:了解如何从CUDA程序访问GPU设备的属性和功能 了解如何加快搜索和排序算法 检测图像中的线条和圆形等形状 使用算法探索对象跟踪和检测 在Jetson TX1中使用不同的视频分析技术处理视频 从P
2022-03-12 16:05:35 23.77MB C++
1
人姿势估计opencv 使用OpenPose MobileNet在OpenCV中执行人体姿势估计 如何使用 使用网络摄像头进行测试 python openpose.py 用图像测试 python openpose.py --input image.jpg 使用--thr增加置信度阈值 python openpose.py --input image.jpg --thr 0.5 笔记: 我修改了以使用由提供的Tensorflow MobileNet Model ,而不是来自CMU OpenPose的Caffe Model 。 来自OpenCV example的原始openpose.py仅使用超过200MB的Caffe Model ,而Mobilenet只有7MB。 基本上,我们需要更改cv.dnn.blobFromImage并使用out = out[:, :19, :, :] cv
2022-03-11 16:35:49 6.97MB opencv computer-vision tensorflow pose-estimation
1
内含国内和国外目前经典的两部著作,目前大部分高校正在使用
2022-03-10 17:06:34 44.5MB 计算机网络 网络 computer network
1