MATLAB实现CNN卷积神经网络多特征分类预测(完整源码和数据) 数据多特征分类数据,输入15个特征,分四类。 运行环境MATLAB2018b及以上,CNN的基本结构由输入层、卷积层、池化层,也称为取样层、全连接层及输出层构成。
MATLAB实现CNN卷积神经网络多输入回归预测(完整源码和数据) 数据多特征分类数据,输入7个特征,输出1个变量。 运行环境MATLAB2018b及以上。
2022-10-13 17:05:58 867KB CNN 卷积神经网络 多输入 回归预测
MATLAB实现CNN卷积神经网络时间序列预测(完整源码和数据) 数据为单变量时间序列数据, 运行环境MATLAB2018b及以上, 一种基于cnn的时间序列预测方法,采用确定好的cnn模型对所述分量数据进行预测,得到所述预测时间点对应的预测结果。
2022-10-13 12:05:11 717KB CNN 卷积神经网络 时间序列预测 MATLAB
态势感知 (SA) 已被认为是电力系统稳定和安全运行的关键保证,尤其是在可再生能源整合后的复杂不确定性下。在本文中,提出了一种人工智能驱动的解决方案,以实现涵盖感知,理解和预测的SA的全面实现,其中最后一个是更先进但具有挑战性的,因此以前没有在任何文献中讨论过。通过聚合两个强大的深度学习结构,提出了一种新颖的SA模型: 卷积神经网络 (CNN) 和长期短期记忆 (LSTM) 递归神经网络。提出的CNN-LSTM模型具有在时空测量数据上实现协作数据挖掘的优势,即从相量测量单元数据中同时学习时空特征。在SA模型中设计了两个功能分支: 应急定位器 (用于检测当前的确切故障位置) 和稳定性预测器 (用于预测将来系统的稳定性状态)。测试一下结果表明,即使在较低的数据充分性水平下,该模型也具有很高的性能 (准确性)。
2022-10-10 21:05:37 3.92MB 机器学习在态势感知领域的应用
1
医学成像中的深度学习:如何在MRI检查中自动检测膝盖受伤? 该存储库包含一个卷积神经网络的实现,该网络对MRI检查中特定的膝盖损伤进行分类。 它还包含我在上撰写的一系列帖子的材料。 数据集:MRNet 数据来自斯坦福大学ML Group研究实验室。 它由斯坦福大学医学中心进行的1,370次膝盖MRI检查,以研究前交叉韧带(ACL)眼泪的存在。 有关ACL撕裂问题和MRNet数据的更多信息,请参阅我的博客文章,您可以在Jupyter Notebook中调查数据并构建以下数据可视化: 要了解有关数据以及如何实现此可视化窗口小部件的更多信息,请阅读 代码结构: 下表总结了该项目的体系结构: 有关该代码的更多详细信息,请参阅我的第二篇。 如何使用代码: 如果您想自己重新训练网络,则必须通过此向斯坦福大学索取数据。 下载数据后,创建一个data文件夹并将其放置在项目的根目录下。 您
2022-10-10 15:30:20 11.29MB computer-vision deep-learning acl cnn
1
DataLoader Dataset不能满足需求需自定义继承torch.utils.data.Dataset时需要override __init__, __getitem__, __len__ ,否则DataLoader导入自定义Dataset时缺少上述函数会导致NotImplementedError错误 Numpy 广播机制: 让所有输入数组都向其中shape最长的数组看齐,shape中不足的部分都通过在前面加1补齐 输出数组的shape是输入数组shape的各个轴上的最大值 如果输入数组的某个轴和输出数组的对应轴的长度相同或者其长度为1时,这个数组能够用来计算,否则出错 当输入数组的某个轴
2022-10-06 17:38:00 146KB AS c cnn
1
基于对象的CNN(OCNN)用于卫星图像语义标记 OCNN的目标是为卫星图像的语义标记提供一种快速,准确的方法,同时保留有关地理实体的详细信息。 它旨在易于实施,以支持卫星图像映射和基准研究评估。 如果您认为这有帮助,请引用我们的作品 此外,我们还要感谢Thomas Blaschke教授,Stefan Lang教授,Dirk Tiede教授以及OBIA小组成员的宝贵建议。 笔记: 基于对象的CNN(OCNN)已经集成了逐像素CNN(PCNN)策略,因此我们放弃了Matlab版本的PCNN,因为它的效率似乎有点低。 要使用OCNN代码,您可能需要确保已经满足必要的环境。 相关的模块或软件包是: 张量流 cv2 泡菜 还应安装其他基本模块,例如numpy,scipy,PIL。 整体结构(这是原型,所以可能看起来有些碎裂): |-OCNN_main.py (improtant!)
2022-10-05 15:30:29 975KB satellite-imagery semantic-mapping ocnn Python
1
基于python语言书写用到的函数库有tensorflow,numpy,pandas,matplotlib. 此压缩包下有包含(CNN手写数字识别.ipynb,CNN涂鸦识别.ipynb,两个数据集分别是minist手写字符集和Google涂鸦集,因占用空间超过1G,采用蓝奏云盘的格式分享,附加一份结课文档可参考)。手写数字识别采用卷积神经网路识别minist手写数字集,涂鸦识别采用卷积神经网络识别涂鸦集,经实验效果良好,准确率达到98%以上。并且使用绘图软件自己绘图识别,测试图片为自己绘制。 经实验,效果良好
1
In this paper we propose acoustic direction of arrival (DOA) estimation with neural networks. Conventional signal processing tasks such as DOA estimation have benefited from recent advancements in deep learning, which leads to a data-driven approach that allows neural networks to be employed in a black-box manner. From traditional aspects, modern network models often lack interpretability when directly employed in signal processing realm. As an alternative, we introduce a learnable network from
2022-09-30 16:05:17 368KB doa tdoa cnn 神经网络
1
cnn-classification-dog-vs-cat 基于CNN的图像分类器,使用Kaggle的猫狗图片数据。 1 requirement python3 numpy >= 1.14.2 keras >= 2.1.6 tensorflow >= 1.6.0 h5py >= 2.7.0 python-gflags >= 3.1.2 opencv-python >= 3.4.0.12 2 Description of files inputs: 猫狗图片样本数据,,使用keras库中的类读取,需要将每个类的图片放在单独命名的文件夹中存放; train.py: 自建的简单CNN,训练后测试集精度约83%; pre_train.py: 利用已训练的常用网络(基于数据集训练),进行迁移学习,测试集精度约95%以上; data_helper.py: 数据读取和预处理模块; img_cnn.py:
2022-09-30 10:39:33 13KB machine-learning image deep-learning tensorflow
1