单层感知器神经网络matlab代码感知器 用于MATLAB的带有反向误差传播学习方法的人工神经网络类。 sigmod传递函数。 这种实现是简单而有效的。 与许多其他针对单个神经元具有单独类的多余实现不同,此代码基于矩阵代数,因为神经元层本质上是矢量,轴突权重不过是矩阵。 人工神经网络的矩阵表示法使所有方法和计算都变得优雅而高效,而计算成本却更低。 缺少许多多余的参数可提供用户友好的体验。 ##方法 PERCEPTRON(layers_vector)-创建具有指定数量的神经元的PERCEPTRON实例。 图层矢量可能类似于以下[10,12,12,12,5]。 具有上述层向量的网络将具有10个输入传感器神经元,三层关联神经元,每个神经元具有12个神经元和5个输出神经元。 forward(obj,input_col_vector)-从输入到输出的正向计算方法 backprop(obj,input,desirable_output,eta)-单一样本反向误差传播方法。 参数“ eta”控制收敛速度,通常为0 <eta <1。典型值eta = 0.001。
2021-11-13 19:26:42 2KB 系统开源
1
基于人工神经网络的动态系统仿真模型和算法研究
2021-11-12 18:51:28 436KB 神经网络
1
简单人工神经网络(ANN) 关于案例研究 在此业务案例研究中,我们预测了银行客户的流失率。 为了了解银行的客户,我们将使用一种深度学习技术,即人工神经网络(ANN)。从数百万的客户中,我们随机选择了1万个客户。 我们将使用客户的特征来确定他/她离开银行的可能性。 为了了解银行的客户,我们将使用一种深度学习技术,即人工神经网络(ANN)。 此外,我们将使用流行的Python库(例如Tensorflow,Keras)和机器学习技术(例如Adam Optimizer)来训练ANN模型并预测客户流失率。 数据:客户数据存储在: 论文:ANN案例研究论文: 研究论文 代码:Artificial_Neural_Network_Case_Study.py SAMPLE_OUTPUT = ANN_Case_Study_Sample_Output_1.png SAMPLE_OUTPUT = ANN_C
2021-11-10 20:14:17 2.57MB data-science machine-learning deep-learning python3
1
RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。
2021-11-10 18:33:54 14KB 神经网络RBF
1
一个典型的BP人工神经网络应用实例,通过对它的研究与学习相信您会从最底层接触和了解BP人工神经网络的任何细节和原理,而不像MatLab中的那样您仅会知道如何调用...
1
神经网络是:思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。标准的神经网络VLSI的实现方式是在单个芯片上集成多个神经元和突触单元,并且将它们按某种通信结构
1
快速人工神经网络库 法恩 快速人工神经网络(FANN)库是一个免费的开源神经网络库,它以C语言实现了多层人工神经网络,同时支持完全连接和稀疏连接的网络。 支持定点和浮点的跨平台执行。 它包括一个易于处理培训数据集的框架。 它易于使用,用途广泛,有据可查且快速。 可以绑定超过15种编程语言。 该库随附了易于阅读的介绍文章和参考手册,以及有关如何使用该库的示例和建议。 该库还提供了几种图形用户界面。 FANN功能 C语言中的多层人工神经网络库 反向传播训练(RPROP,Quickprop,批处理,增量式) 不断发展的拓扑训练,可动态构建和训练ANN(Cascade2) 易于使用(只需三个函数调用即可创建,训练和运行ANN) 快速(执行速度是其他库的150倍) 多功能(可以即时调整许多参数和功能) 记录良好(易于阅读的介绍文章,详尽的参考手册以及描述实施注意事项的50多页大学报告等) 跨平台(据报道,Linux和Unix的配置脚本,Windows的dll文件,MSVC ++的项目文件和Borland编译器也可以正常工作) 实现了几种不同的激活功能(包括用于额外速度的逐步
2021-11-05 21:33:46 3.65MB c library neural-network fann
1
人工神经网络教程,学习的童鞋们可以参考一下
2021-11-03 14:29:54 8.23MB 人工神经网络
1
供水管网发生爆管事故后,快速确定爆管位置,可以实现迅速抢修,有效降低事故的损失。针对爆管定位问题,本文基于人工神经网络(ANN),建立爆管位置与事故时压力监测点的压力变化率之间的非线性映射关系,构建了ANN爆管定位模型,并选取了一个供水管网案例,引入相关系数(R2)指标评估模型的精度,验证了方法的可行性。此外,分析了不同监测点组合对模型定位精度的影响,发现监测点组合均匀分布在管网内部时,模型定位精度越高。   随着我国城市化进程的不断加快,城市供水管网的规模也不断增加,由于缺乏科学合理的规划、维护与运行管理,各大城市的供水管网爆管事故频发,严重影响了城市供水的安全性和经济性,对资源、环境、社会均产生了巨大的负面影响。目前水务公司发现爆管事故多依赖于人工报告,此为被动性爆管定位方法,此方法虽然可以确定准确的爆管点,但弊端也比较明显,检测效率较低,反应时间较长,发现事故时,可能已经造成了较大的损失。因此,需要开展供水管网爆管事故智能检测方面的研究,快速准确地确定爆管位置和事故影响范围,并做出相应的科学决策。   为了解决爆管定位的难题,各国学者均开展了大量的相关研究工作。1992 年,Liggett 等人首先提出基于暂态的爆管定位方法,该方法的基本原理是爆管产生的压力波将先后传播到附近的几个压力监测点,根据传播路径和时间差来诊断爆管位置,但由于压力波传播路径比较复杂,且时间差通常很短,因此定位精度会受到严重影响;等人综合运用负压波和流量检测法进行泄漏模式识别与漏点定位,可及时发现和定位泄漏点。基于水力模型的爆管定位方法也取得了一定的进展,Wu 在此研究方向做出了代表性的工作,其结果被英国的水务公司所采用;Sanz 等人后续推进了这方面的研究,其依据爆管的水量变化过程,不断校核管网模型的空间分布参数,其结果展示出了较高的爆管定位精度;等人利用监测资料与低压供水模型相结合的管网爆管水力学模型实现了爆管定位,并分析了爆管点位置与周围压力变化的关系。随着人工智能技术的快速发展,数据驱动的智能爆管分析方法成为了国内外学者的热点关注问题。应用人工免疫网络并结合最近邻方法,推测爆管事故的发生;Zhang等人采用支持向量机分析爆管区域;等人通过SCADA(SupervisoryControl and Data Acquisition)监测系统收集压力数据,对比爆管前后两个时刻的压力值变化,绘制爆管压降等值线图,最后通过压降中心来定位爆管点,以上三个研究均是基于机器学习的方法,通过训练模型达到对实测数据的异常辨识功能,从而确定爆管的位置。   针对智能化的爆管定位问题,本文提出了一种基于人工神经网络(ANN)的供水管网爆管定位方法,利用ANN的模式识别功能,建立爆管位置与压力监测点水压化率之间的非线性映射关系,实现爆管位置的确定。此外,本文选取了一个案例管网,通过大量的模拟爆管事故,验证了所提出方法的可行性。
2021-11-02 16:31:34 825KB 网络/通信
1
基于人工神经网络的异步电机SVPWM转差频率矢量控制仿真实现.pdf