6种算法(线性回归、随机森林、支持向量机、BP神经网络、GRU、LSTM)对电力系统负荷进行预测。通过一个简单的例子。 各种算法(线性回归、随机森林、支持向量机、BP 神经网络、GRU、LSTM)用于电力系统负载预测/电力预测。
2023-04-11 12:09:30 726KB 预测模型 负荷预测 GRU LSTM
1
普通最小二乘(OLS)回归 这是一个简单的项目,展示了OLS回归算法的实现。 在此特定实现中,将发生以下情况: 1. input independent and dependent variable data is split into "training" and "prediction" sets. 2. Within the training set, k-fold crossvalidation is used to generate an Akaike Information Criteria (AIC) value for each 1-p combinations of independent variables. 3. The model with the lowest AIC is selected and fit to the entire
2023-04-10 19:27:03 51KB Python
1
IsingFit 该网络估计程序eLasso基于Ising模型,将l1正则逻辑回归与基于扩展贝叶斯信息准则(EBIC)的模型选择相结合。 EBIC是一种适合的度量,用于识别变量之间的相关关系。 生成的网络由变量(作为节点)和相关关系(作为边)组成。 可以处理二进制数据。
2023-04-10 08:02:07 16KB R
1
MLR - 多元线性回归 PCA - 主成分分析 PLS - 偏最小二乘 LogisticR - 逻辑斯蒂回归 Ganzhiji - 感知机(perception) PSO - 粒子群优化 KNN - K_近邻 Bayes - 贝叶斯 OSC - 正交信号校正 GDescent - 梯度下降 ANN - 人工神经网络 BOOSTING - 提升算法
2023-04-08 22:54:24 237KB matlab 回归
1
1.提出问题 明确要分析的问题,为后续的机器学习过程提供目标。 2.理解数据(采集并查看数据) 采集数据(根据研究问题采集数据);导入数据(从不同数据源读取数据);查看数据信息(描述统计信息、数据缺失值、异常值情况等,可以结合具体图表来直观查看数据)。 3.数据清洗(数据预处理) 数据预处理是数据分析过程中关键的一环,数据质量决定了机器学习分析的上限,而具体采用的算法和模型只是逼近这个上限。(包括缺失数据处理、异常值处理、数据类型转换、列名重命名、数据排序、选择子集、特征工程等步骤) 4.构建模型 根据研究的问题以及数据的特点选择合适的算法,将训练数据放入所选择的机器学习算法中构建相应的模型,有时需要对多种算法模型进行比较,甚至进行模型整合。 5.模型评估 利用测试数据对得到的模型效果进行评估,具体评估指标依据研究的问题及采用的模型进行选择,常用到的指标需根据模型的类型而定,如分类模型常用准确率、ROC-AUC等,而回归模型可以用决定系数等。
2023-04-06 09:49:44 52KB 程序设计 项目语言 毕业设计 源码
1
代码有详细注解,多输出单输出,Excel数据读取,适合初学者,先到先得!
2023-04-05 12:50:05 61KB 支持向量机 MATLAB 回归预测
1
一元线性回归数据集
2023-04-05 12:30:22 12KB 一元线性回归数据集
1
本文介绍了一元线性回归在Matlab中的实现方法,包括如何读取数据、如何求解回归方程等。作者提供了一个数据文件,其中第一行存放x的观察值,第二行存放y的观察值。通过Matlab中的命令,可以求出回归方程,并进行检验。本文还提供了作者在MATLAB R2009a(7 8 0 347)中运行通过的代码。
2023-04-04 15:39:15 25KB matlab 线性回归 开发语言 算法
1
(52条消息) R语言生存分析COX回归分析实战:以乳腺癌数据为例_Data+Science+Insight的博客-CSDN博客_利用r对癌症数据进行生存分析.mhtml
2023-04-04 13:30:19 2.81MB
1
Matlab实现GA-LSTM遗传算法优化长短期记忆网络的数据多输入单输出回归预测(完整源码和数据) 命令窗口输出MAE、MAPE、MSE、R2、MSE等指标。 优化学习率、隐藏层节点数、正则化系数。
2023-04-03 22:23:22 417KB matlab 网络 lstm 回归