python分别实现基于神经网络、线性回归、SVM方法预测学生成绩源码+数据集.zip 【完成的任务】 根据提供一组包含学生成绩与校园卡消费记录的数据。我对数据进行预处理后,分别采用神经网络、线性回归和SVM方法对学生学习成绩进行了回归。准确率为78%。 结果表明,学生经常去图书馆自习、每天在食堂吃饭不超过16块且前3学期学习成绩达到优秀的学生,在第4学期很可能再次达到优秀。该结果只针对次数据集。
2022-12-19 18:26:15 12.19MB SVM 机器学习 神经网络 线性回归
蜣螂优化算法(DBO)优化BP神经网络多输入单输出回归预测(Matlab完整程序和数据) 蜣螂优化算法(DBO),BP神经网络,多输入单输出回归预测。 蜣螂优化算法(DBO)优化BP神经网络多输入单输出回归预测(Matlab完整程序和数据)
MATLAB实现GWO-LSTM灰狼算法优化长短期记忆神经网络多输入单输出回归预测(完整源码和数据) 灰狼算法优化参数为初始学习率,隐藏层节点个数,正则化参数。 数据为多输入回归数据,输入6个特征,输出1个变量。 运行环境MATLAB2018b及以上,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。
MATLAB实现GWO-GRU灰狼算法优化门控循环单元多输入单输出回归预测(完整源码和数据) 灰狼算法优化参数为初始学习率,隐藏层节点个数,正则化参数。 数据为多输入回归数据,输入6个特征,输出1个变量。 运行环境MATLAB2020b及以上,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。
用于logisti回归分析的数据材料,可以参见我的文章进行练习logisti回归分析的方法,正在大学课上练习。
2022-12-17 21:37:24 16KB r语言
1
1.基本概念 **线性回归(Linear Regression)**是一种通过属性的线性组合来进行预测的线性模型,其目的是找到一条直线或者一个平面或者更高维的超平面,使得预测值与真实值之间的误差最小化。 2.特点 优点:结果具有很好的可解释性(w直观表达了各属性在预测中的重要性),计算熵不复杂。 缺点:对非线性数据拟合不好 适用数据类型:数值型和标称型数据 3.自己实现的线性回归 3.1 简单线性回归 1.利用最小二乘法得到的系数 2.用简答随机数模拟的方法来搭建简单线性回归 import numpy as np import matplotlib.pyplot as plt x =
2022-12-17 20:03:50 639KB assert linear mean
1
MATLAB实现SSA-BiLSTM麻雀算法优化双向长短期记忆神经网络多输入单输出回归预测(完整源码和数据) 麻雀算法优化参数为隐含层节点数,最大训练代数,初始学习率参数。 数据为多输入回归数据,输入7个特征,输出1个变量。 运行环境MATLAB2018b及以上,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。
摘要:中国是世界上最大的发展中国家,中国股票市场的股票价格是序列相关的,这意味着股票的历史信息可以用来预测未来股价。本文以沪深300指数为实例,以其成交金额、最
2022-12-17 11:47:07 1.78MB 线性回归
1
盈利预测的多元线性回归
2022-12-17 11:39:19 3KB R
1
经典书籍《统计学习方法》李航,第6章 逻辑斯谛回归(Logistic Regression)-Python代码
2022-12-16 10:51:40 28KB Python Code
1