机器学习之线性回归算法

上传者: 38681147 | 上传时间: 2022-12-17 20:03:50 | 文件大小: 639KB | 文件类型: PDF
1.基本概念 **线性回归(Linear Regression)**是一种通过属性的线性组合来进行预测的线性模型,其目的是找到一条直线或者一个平面或者更高维的超平面,使得预测值与真实值之间的误差最小化。 2.特点 优点:结果具有很好的可解释性(w直观表达了各属性在预测中的重要性),计算熵不复杂。 缺点:对非线性数据拟合不好 适用数据类型:数值型和标称型数据 3.自己实现的线性回归 3.1 简单线性回归 1.利用最小二乘法得到的系数 2.用简答随机数模拟的方法来搭建简单线性回归 import numpy as np import matplotlib.pyplot as plt x =

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明