工具介绍 LAC全称中文的词法分析,是百度自然语言处理部研发的一种联合的词法分析工具,实现中文分词,词性标注,专名识别等功能。该工具具有以下特点和优势: 效果好:通过深度学习模型联合学习分词,词性标注,专名识别任务,单词索引,整体效果F1值超过0.91,词性标注F1值超过0.94,专名识别F1值超过0.85,效果领先。 效率高:精简模型参数,结合Paddle预测库的性能优化,CPU单线程性能达800QPS,效率领先。 可定制:实现简单可控的干预机制,精确匹配用户字典对模型进行干预。 调用便捷:支持一键安装,同时提供了Python,Java和C ++调用接口与调用示例,实现快速调用和集成。 支持
1
InsightFace-REST 该存储库旨在为 InsightFace 人脸检测和识别管道提供方便、易于部署和可扩展的 REST API,使用 FastAPI 进行服务,使用 NVIDIA TensorRT 进行优化推理。 代码主要基于官方 DeepInsight InsightFaceAPI。 该存储库提供用于构建人脸识别 REST API 和使用 Docker 将模型转换为 ONNX 和 TensorRT 的源代码。 主要特征: 准备好使用 Docker 和 nvidia-docker2 在支持 NVIDIA GPU 的系统上进行部署。 启动时自动下载模型(使用 Google Drive)。 借助 TensorRT 优化、FP16 推理和使用 ArcFace 模型对检测到的人脸进行批量推理,性能比 MXNet 推理提高多达 3 倍。 支持较旧的 Retinaface 探
2022-03-06 16:52:45 2.2MB docker gpu face-recognition face-detection
1
人脸识别的68个特征点检测库dat文件,人脸识别的5个特征点检测库dat文件以及dlib_face_recognition_resnet_model_v1.dat人脸识别模型
2022-03-06 16:39:38 95.19MB face recognition dlib
1
face-recognition:人脸识别考勤系统
2022-03-06 15:39:38 11.78MB 系统开源
1
人脸识别 使用HOG进行人脸检测,使用Facenet进行特征提取。 参考: 使用Keras,Dlib和OpenCV进行深脸识别
2022-03-06 15:19:09 1.81MB 系统开源
1
CNN的眼病识别 从一个滑稽的挑战开始:使用卷积神经网络从眼底图像识别眼部疾病 深度学习项目 可用于模型训练和评估的代码 借助Grad-CAM增强了模型的可解释性
2022-03-05 15:52:08 1.25MB Python
1
prml英文原本适合自己打印,减少买书的钱
2022-03-04 17:44:57 4.53MB 机器学习资料
1
MevonAI-语音情感识别 识别音频段中多个发言人的情绪· 在这里尝试演示 目录 说话人二值化 特征提取 CNN模型 训练模型 贡献 执照 致谢 常问问题 关于该项目 该项目的主要目的是识别呼叫音频中多个说话者的情绪,作为呼叫中心客户满意度反馈的应用程序。 建于 的Python 3.6.9 Tensorflow-Keras 解放军 入门 按照以下说明在本地计算机上设置项目。 安装 创建一个python虚拟环境 sudo apt install python3-venv mkdir mevonAI cd mevonAI python3 -m venv mevon-env source mevon-env/bin/activate 克隆仓库 git clone https://github.com/SuyashMore/MevonAI-Speech-Emotion-Recog
1
用于自动调制识别的时空多通道学习框架 作者:徐嘉朗(电子邮件: )、、杰拉德·帕尔、罗杨。 论文“的”的官方实现。 该存储库包含论文中的 MCLDNN 实现和数据集。 介绍 自动调制识别 (AMR) 在现代通信系统中起着至关重要的作用。 我们提出了一种新颖的三流深度学习框架,以从调制数据的单个和组合同相/正交 (I/Q) 符号中提取特征。 所提出的框架集成了一维 (1D) 卷积、二维 (2D) 卷积和长短期记忆 (LSTM) 层,以从时间和空间的角度更有效地提取特征。 在基准数据集上的实验表明,所提出的框架具有高效的收敛速度并提高了识别精度,特别是对于由 16 正交幅度调制 (16-QAM) 和 64-QAM 等高维方案调制的信号。 引文 如果这项工作对您的研究有用,请考虑引用: @ARTICLE{9106397, author={J. {Xu} and C. {Luo} an
1
基于深度学习的植物病害识别 这个基于django的Web应用程序使用经过训练的卷积神经网络来识别植物叶片上存在的疾病。 它由38种不同的健康和病态植物叶子组成。 38个类是: 苹果->苹果结ab 苹果->黑腐 苹果->雪松苹果锈 苹果->健康 蓝莓->健康 樱桃->白粉病 樱桃->健康 玉米-> Cercospora叶斑(灰色叶斑) 玉米->普通锈 玉米->北方叶枯病 玉米->健康 葡萄->黑腐 葡萄->埃斯卡(黑麻疹) 葡萄->叶枯病(Isariopsis Leaf Spot) 葡萄->健康 橙色->上龙冰(柑橘绿化) 桃->细菌斑 桃子->健康 胡椒,铃铛->细菌斑 胡椒,铃铛->健康 马铃薯->早疫病 马铃薯->晚疫病 土豆->健康 覆盆子->健康 大豆->健康 壁球->白粉病 草莓->叶焦 草莓->健康 番茄->细菌斑 番茄->早疫病 番茄->晚疫病 番茄->叶霉 番茄
2022-03-03 11:16:04 5.9MB JavaScript
1