Computers are used more and more to provide high-quality and reliable products and services, and to control and optimise production processes. Such computers are often embedded into the products and thus hidden to the human user.
2021-06-23 21:01:53 1.73MB Real-Time Automatic Verification
1
Computers are used more and more to provide high-quality and reliable products and services, and to control and optimise production processes. Such computers are often embedded into the products and thus hidden to the human user. Examples are computer-controlled washing machines or gas burners, electronic control units in cars needed for operating airbags and braking systems, signalling systems for high-speed trains, or robots and automatic transport vehicles in industrial production lines
2021-06-23 20:54:53 1.73MB REAL TIME
1
2018年最新《Real-Time Rendering 3rd》 提炼总结.pdf 2018年最新《Real-Time Rendering 3rd》 提炼总结.pdf
2021-06-22 18:20:32 22.24MB render 3d 图形 渲染
1
实时面部表情识别 使用Tensorflow-Keras API中的转移学习(计算机视觉)进行面部表情识别或面部表情识别
2021-06-20 15:43:45 1.65MB JupyterNotebook
1
Real-Time Rendering 4rd最新版,高清大概800M,详细介绍渲染知识
2021-06-18 08:01:14 67B 渲染 Real-Time Render
1
WebRTC 1.0: Real-time Communication Between Browsers
2021-06-17 18:10:07 2.32MB WebRTC
1
Real-Time Rendering 4th Edition,,彩色完整版。。。。
2021-06-16 11:06:11 24KB 完整版 4th
1
可汗学院练习的仪表板在地图上实时完成! 设置 要设置为本地开发,只需启动一个本地服务器服务于项目目录: python -m SimpleHTTPServer 托管在,因此只需推送到gh-pages分支即可自动发布站点。
2021-06-07 12:02:54 9KB JavaScript
1
TTNet-Pytorch 论文“ TTNet:乒乓球的实时时空视频分析”的实现可以在找到该项目的简介 演示版 1.特点 球检测全球舞台 检球局部阶段(细化) 事件发现检测(跳动和净匹配) 语义细分(人,表和记分板) 启用/禁用TTNet模型中的模块 平滑标记事件发现 TensorboardX (更新2020.06.23) :训练更快,在单个GPU(GTX1080Ti)的推理阶段达到> 120 FPS 。 (更新2020.07.03) :该实现可以与TTNet论文中报告的结果取得比较结果。 (更新2020.07.06) :TTNet Paper有几个限制(提示:损失函数,输入大小以及另外2个)。 我已经用新方法和新模型实施了该任务。 现在,新模型可以实现: > 130FPS推论, 细分任务的IoU得分约为0.96 球检测任务的均方根误差(RMSE) < 4像
2021-06-06 22:22:44 21.98MB 系统开源
1
计算机视觉Github开源论文
2021-06-03 09:09:08 1.57MB 计算机视觉
1