OFDM作为下一代通信系统的关键技术,亟需解决其同步问题。在ML算法的基础上,提出了基于多符号的 ML同步算法。在加性高斯白噪声条件下进行了仿真,结果表明改进的同步算法性能比ML算法要好很多。其中,基于连续符号的定时估计方法1在信噪比超过2 dB时准确率几乎可达100%,基于重复发送符号的定时估计方法2在较低信噪比条件下性能比方法1更好。信噪比为-8 dB左右时,3种优化的频偏估计方法的估计误差均在1%以内,明显好于ML频偏估计算法,证明了改进算法的优越性。
2022-03-06 19:26:51 456KB 正交频分复用
1
y作m次多元式拟合的MATLAB代码机器学习(MATLAB)-Logistic回归 斯坦福大学在Coursera上的机器学习课程。 环境 macOS Catalina(版本10.15.3) MATLAB 2018 b 数据集 ex2data1.txt(一项功能) ex2data2.txt(两个功能) 此仓库中包含的文件 ex2.m-引导您完成练习的Octave / MATLAB脚本 ex2 reg.m-练习的后面部分的Octave / MATLAB脚本 ex2data1.txt-练习的上半部分的训练集 ex2data2.txt-练习的第二部分 Submit.m-将您的解决方案发送到我们的服务器的提交脚本 mapFeature.m-生成多项式特征的函数 plotDecisionBoundary.m-绘制分类器决策边界的函数 [⋆] plotData.m-绘制2D分类数据的函数 [⋆] sigmoid.m-Sigmoid函数 [⋆] costFunction.m-Logistic回归成本函数 [⋆] predict.m-Logistic回归预测函数 [⋆] costFunctionReg.
2022-03-04 20:08:38 5.63MB 系统开源
1
MLFlow Docker设置 如果您想使用单线启动mlflow项目-此存储库适合您。 唯一的要求是将docker安装在您的系统上,我们将在linux / windows上使用Bash。 特征 通过一个文件(.env)进行设置 生产就绪的Docker卷 单独的工件和数据容器 准备好bash脚本来复制和粘贴,以供同事使用您的服务器! 简单的安装指南 配置.env文件供您选择。 您可以在其中放置任何您喜欢的东西,它将用于配置您的服务 通过这一行来运行基础结构: $ docker-compose up -d Creating network " mlflow-basis_A " with driver " bridge " Creating mlflow_db ... done Creating tracker_mlflow ... done Creating aws-s3
2022-03-03 17:03:45 10KB docker ai s3 ml
1
2018中国“法研杯”法律智能挑战赛 CAIL2018 1. Official Website 2. Time nodes 第一阶段(2018.05.15-2018.07.14): ~ 6月 5日,基于Small数据的模型提交截至。向评测结果高于基准算法成绩的团队发布Large数据 ~ 6月12日,基于Large-test数据对前期模型进行重新评测刷榜 ~ 7月14日,最终模型提交截至。 第二阶段(2018.07.14-2018.08.14): 主办方根据一个月的新增数据对最终模型进行封闭评测 3. Notice 3.1. Necessary adjustment 在将本项目代码clone或download到本地运行时,需要对如下文件处做简单修改: 在./predictor中创建model/目录(github上无法上传空文件夹) ./utils/util.py中的第9行DATA_DIR,改
2022-03-02 21:16:49 5.86MB ml npl JupyterNotebook
1
泰坦尼克数据集,包括train.csv/test.csv/gendermodel.csv
2022-03-02 16:54:30 32KB ML
1
ml-恶意软件分类器 参考 Daniel Arp, Michael Spreitzenbarth, Malte Huebner, Hugo Gascon, and Konrad Rieck "Drebin: Efficient and Explainable Detection of Android Malware in Your Pocket", 21th Annual Network and Distributed System Security Symposium (NDSS), February 2014 原始文件可以在找到。 原始数据集可在找到。 用法 该代码位于code文件夹
2022-03-02 16:36:57 5.44MB learning machine-learning machine scikit-learn
1
在MIMO系统中,利用最大似然估计法估算信息传输的误码率
2022-03-02 10:11:50 1KB 信道检测最大似然估计法 mimo
开放能源 机器学习介绍智能电表用电量数据,然后使用K-means打开,清理,聚类数据,然后使用CART进行分类。 此练习具有教育和研究目的。 该项目是使用Fluvius的数据完成的: ://www.fluvius.be/nl/thema/open-data 摘自UKPN的伦敦低碳项目: ://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households LCL家庭信息文件'informations_households.csv': :
2022-03-01 09:45:52 19KB Python
1
FastAPI部署的股票市场预测模型(使用Prophet) 若要使用,请使用与以下请求类似的请求查询API, $卷曲--header“内容类型:application / json” -请求POST --data'{“ ticker”:“ MSFT”}' 股票代号的价值是您要对其进行库存预测的公司。
2022-02-26 17:17:25 2.71MB Python
1
机器学习游乐场 用于学习新概念的项目的集合。 这些模型在PyTorch中实现。 结构 计算机视觉 图片分类进行二进制/多类分类。 楷模实现SOTA卷积神经网络。 物体检测实施YOLO,SSD,RetinaNet和Faster R-CNN。 语义分割实施FCN-8和U-Net。 神经风格转换实现艺术风格的神经算法。 生成模型 实施DCGAN,Wasserstein GAN,VAE和有条件的VAE。 自然语言处理 情绪分析使用不同的预训练方法进行情感分析:词嵌入,BERT。 文字合成综合文本(字符级别)。 word2vec 实现word2vec。 语音分类 分类语音命令。 额外的 协同过滤实施协作过滤。 实体嵌入实现实体嵌入。 量化量化CNN模型。 修剪修剪CNN模型。
2022-02-23 11:57:58 4.67MB pytorch JupyterNotebook
1