对于许多分析师和研究人员而言,预测特定股票的价格一直是一项艰巨的任务。 实际上,投资者对股票价格预测的研究领域非常感兴趣。 但是,提高预测单个股票价格的准确性确实是一项艰巨的任务。 因此,在本文中,我提出了一种序贯学习模型,用于使用LTSM-RNN方法预测带有公司行为事件信息和宏观经济指标的单个股票价格。 结果表明,该模型有望成为预测具有公司行为和公司发行等变量的单个股票的价格的有前途的方法。
1
主要为大家详细介绍了python使用RNN进行文本分类,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
2021-12-14 16:19:48 120KB python RNN 文本分类
1
IMU-PLOS_LSTM 使用LSTM网络通过PLOS训练IMU数据-这是自定义LSTM-RNN。 在这里,每个示例都应写入到csv中。 一个csv的训练示例包括[时间步数(窗口大小*(类数+功能昏暗))]
2021-12-14 10:13:59 22.72MB JupyterNotebook
1
使用循环神经网络(RNN)实现简易的二进制加法器,利用python中numpy包实现。
2021-12-13 21:56:50 61KB RNN
1
说明 本文是方法记录,不是完整的项目过程(在我Jupyter上,数据前期预处理部分懒得搬了),也没有调参追求准确度(家里电脑跑不动)。 参考任务来源于Kaggle,地址:电影评论情感分类 本文参考了不同的资料来源,包括斯坦福CS224N的课程资料,网上博客,Keras官方文档等 任务核心部分 1.单词表示 1.1 理论部分 对大部分(或者所有)NLP任务,第一步都应该是如何将单词表示成符合模型所需要的输入。最直接的思路就是将单词(符号)变为词向量。 词向量的表示方法: one-hot 编码:想法直接,但过于稀疏,且词与词之间正交,无法衡量词之间的相似度 基于矩阵分解的方法:比如不同词窗的矩阵,
2021-12-05 23:21:52 131KB dd ed IN
1
多类别文字分类 在Tensorflow中实现四个神经网络,以解决多类文本分类问题。 楷模 LSTM分类器。 参见rnn_classifier.py 双向LSTM分类器。 参见rnn_classifier.py CNN分类器。 参见cnn_classifier.py。 参考: 。 C-LSTM分类器。 请参阅clstm_classifier.py。 参考:。 资料格式 训练数据应存储在csv文件中。 文件的第一行应为[“ label”,“ content”]或[“ content”,“ label”]。 要求 Python 3.5或3.6 Tensorflow> = 1.4.0 脾气暴躁的 火车 运行train.py训练模型。 参数: python train.py --help optional arguments: -h, --help show
2021-12-05 15:41:29 7.46MB nlp deep-learning text-classification cnn-lstm
1
作曲是一项非常有趣的挑战,它会测试作曲家的创作能力,无论是人还是计算机。 尽管对此事有很多争论,但几乎所有音乐都是对以前创造的声音观念的反感或改变。 因此,有了足够的数据和正确的算法,深度学习应该能够制作出听起来像人类的音乐。 该报告概述了通过神经网络模型进行音乐创作的各种方法,很明显,可以从这些算法中收集音乐思想,以期创作出一部新音乐。 使用深度学习来解决文学艺术中的问题是近来的趋势,该趋势已引起了广泛的关注,并且音乐的自动生成已成为活跃的领域。 该项目使用依赖于各种LSTM(长期短期记忆)架构的某种形式的音乐符号来处理音乐的产生。 全连接和卷积层与LSTM一起使用,以捕获频域中的丰富功能并提高所生成音乐的质量。 该作品专注于不受约束的音乐生成,并且不使用任何有关音乐结构的信息(例如音符或和弦)来帮助学习。
2021-11-30 22:05:26 653KB 论文研究
1
SequencePrediction Pytorch 实现RNN、LSTM、GRU模型
2021-11-30 14:40:25 12KB Python
1
递归神经网络模型用于纠错 该存储库提供了在描述的各种模型的源代码。 该项目旨在实现和评估神经网络模型,特别是递归神经网络(RNN),双向递归神经网络(BRNN),序列到序列(seq-to-seq)模型以及最终基于注意力的机制。序列到序列模型。 下图说明了预测给定不正确短语的正确形式的编码器-解码器模型。 DyNet库 在当前项目的实施中,我们一直在使用DyNet。 动态神经网络工具包或DyNet是一个神经网络库,适用于具有动态结构的网络。 DyNet支持在神经网络计算中使用的静态和动态声明策略。 在动态声明中,每个网络都是通过使用有向和无环计算图构建的,该图由定义模型的表达式和参数组成。 DyNet在CPU或GPU上有效工作,最近为许多NLP研究论文和项目提供了支持。 您可以找到有关DyNet的更多信息。 资料集 我们的方法与语言无关。 专门针对我们的项目,我们使用对模型进行了训练和评估,
1
LSTM_Stock_Predictor 由于加密货币投机活动的波动性,投资者通常会尝试结合社交媒体和新闻文章的观点来帮助指导其交易策略。 这样的指标之一就是 ,它试图使用各种数据源来产生加密货币的每日FNG值。 让我们使用FNG值和简单的收盘价来构建和评估深度学习模型,以确定FNG指标是否为加密货币提供比正常收盘价数据更好的信号。 我们将使用深度学习递归神经网络来建模比特币收盘价。 一个模型将使用FNG指标来预测收盘价,而第二个模型将使用收盘窗口来预测第n个收盘价。 方法: 准备数据以进行培训和测试 我们将使用n天窗口的时间窗口对数据进行切片。 对于Fear and Greed模型,我们将使用FNG值来尝试并预测收盘价。 对于收盘价模型,我们将使用之前的收盘价来尝试并预测下一个收盘价。 在每个模型中,我们将使用70%的数据进行训练,并使用30%的数据进行测试 使用MinMax
2021-11-29 19:26:56 8.49MB JupyterNotebook
1