LSTM_Stock_Predictor:使用深度学习模型预测加密货币价格-LSTM RNN体系结构-源码

上传者: 42175971 | 上传时间: 2021-11-29 19:26:56 | 文件大小: 8.49MB | 文件类型: -
LSTM_Stock_Predictor 由于加密货币投机活动的波动性,投资者通常会尝试结合社交媒体和新闻文章的观点来帮助指导其交易策略。 这样的指标之一就是 ,它试图使用各种数据源来产生加密货币的每日FNG值。 让我们使用FNG值和简单的收盘价来构建和评估深度学习模型,以确定FNG指标是否为加密货币提供比正常收盘价数据更好的信号。 我们将使用深度学习递归神经网络来建模比特币收盘价。 一个模型将使用FNG指标来预测收盘价,而第二个模型将使用收盘窗口来预测第n个收盘价。 方法: 准备数据以进行培训和测试 我们将使用n天窗口的时间窗口对数据进行切片。 对于Fear and Greed模型,我们将使用FNG值来尝试并预测收盘价。 对于收盘价模型,我们将使用之前的收盘价来尝试并预测下一个收盘价。 在每个模型中,我们将使用70%的数据进行训练,并使用30%的数据进行测试 使用MinMax

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明