文本分类——Embedding、CNN、RNN练手

上传者: 38587924 | 上传时间: 2021-12-05 23:21:52 | 文件大小: 131KB | 文件类型: -
dd ed IN
说明 本文是方法记录,不是完整的项目过程(在我Jupyter上,数据前期预处理部分懒得搬了),也没有调参追求准确度(家里电脑跑不动)。 参考任务来源于Kaggle,地址:电影评论情感分类 本文参考了不同的资料来源,包括斯坦福CS224N的课程资料,网上博客,Keras官方文档等 任务核心部分 1.单词表示 1.1 理论部分 对大部分(或者所有)NLP任务,第一步都应该是如何将单词表示成符合模型所需要的输入。最直接的思路就是将单词(符号)变为词向量。 词向量的表示方法: one-hot 编码:想法直接,但过于稀疏,且词与词之间正交,无法衡量词之间的相似度 基于矩阵分解的方法:比如不同词窗的矩阵,

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明