RRTStar(Rapidly-exploring Random Tree Star)是一种路径规划算法,它是RRT(Rapidly-exploring Random Tree)算法的改进版本。RRTStar算法的主要特征在于它能够快速地找出初始路径,并随着采样点的增加,不断地对路径进行优化,直至找到目标点或达到设定的最大循环次数。 RRTStar算法通过在三维空间中构建一棵随机树,并不断扩展树的边界,逐步逼近目标点。算法采用了启发式函数和重新布线策略来提高规划效率和路径质量。启发式函数用于估计当前节点与目标点之间的距离,引导树的扩展方向。而重新布线策略则用于优化树的结构,避免树的过早收敛,形成更平滑的路径。 此外,RRTStar算法是渐进优化的,即随着迭代次数的增加,得出的路径会逐渐优化,但它在有限的时间内无法得出最优路径。这种算法对于解决无人机三维路径规划问题特别有效,能够快速生成可行且平滑的避障路径。总的来说,RRTStar算法通过引入启发式函数和重新布线策略,有效地提升了路径规划的效率和质量,是一种有效的路径规划方法。
2024-08-26 10:03:49 5KB matlab
1
RRT(Rapidly-exploring Random Tree)算法是一种基于随机采样的树形路径规划算法,特别适用于机器人、自动驾驶车辆和其他自主系统的运动规划问题。该算法的核心思想是在机器人的可达空间中随机生成采样点,并通过从树的根节点逐步向采样点扩展节点的方式,构建出一个随机树。当某个节点与目标点的距离小于设定的阈值时,即可认为找到了可行路径。RRT算法能够快速生成可行路径,并且可以在运动过程中动态地调整路径以适应环境的变化。RRT算法的特点是能够快速有效地搜索高维空间,通过状态空间的随机采样点,把搜索导向空白区域,从而寻找到一条从起始点到目标点的规划路径。因此,它特别适合解决多自由度机器人在复杂环境和动态环境中的路径规划问题。RRT算法的应用领域非常广泛,包括但不限于机器人路径规划、游戏开发、无人机飞行以及自动驾驶等。在这些领域中,RRT算法都能够帮助系统快速找到可行的路径,实现智能化行动和自主飞行,确保行驶安全,为解决复杂环境中的路径规划问题提供了有效的解决方案。
2024-08-26 09:46:23 3KB matlab
1
Dijkstra算法python实现,基于邻接矩阵及优先队列 不仅能够求解其实节点到各个节点的最短路径长度,而且并确定各条最短路径上的节点信息
2024-08-23 11:13:41 5KB python Dijkstra 图与网络
1
通过整数编程进行多机器人路径规划(提交SoCG 2021) 这是塔夫茨大学一个实施项目,是我们对提交的一部分。 我们对其他算法的探索。 该项目在Yu和LaValle的“图上的最佳多机器人路径规划:完整算法和有效启发式算法” 实现了最小化跨机器人多运动计划算法。 根据SoCG挑战的要求,我们添加了其他约束来处理连续的网格运动。 正在安装 该项目依赖于Python 3.8,Gurobi 9.1和其他一些依赖项。 Gurobi可以一起并且需要许可证 。 其他依赖项可以通过pip install -r requirements.txt 。 跑步 求解器在小型实例(最大25x25)上效果最佳。 要为最小实例生成解决方案,请运行 python solve_instance.py --db cgshop_2021_instances_01.zip --name small_000_10x10_20_
2024-08-21 16:14:39 8KB Python
1
车辆路径问题(Vehicle Routing Problem, VRP)是运筹学中的一个重要研究领域,它涉及到如何在满足特定约束条件下,如车辆容量、行驶距离等,最有效地规划一系列配送点的访问路径。CVRP( Capacitated Vehicle Routing Problem)是VRP的一个变种,其中考虑了车辆的载货能力限制。在这个问题中,目标是找到最小化总行驶距离的路线方案,同时确保每辆车的载货量不超过其容量。 "Christofides&Eilon Set-E(1969)" 是一个经典的数据集,用于测试和评估CVRP的解决方案。这个数据集是由两位学者,Nicos Christofides和Yehuda Eilon,在1969年提出的。他们对这个问题进行了深入研究,并提出了相关的算法和解决方案,为后续的研究提供了基准。 数据文件的命名遵循了一种特定的格式:“E-n32-k5”,其中: - "E" 表示这是Christofides和Eilon的数据集。 - "n" 后面的数字表示问题中的节点数量,即需要服务的客户点或配送点的数量。 - "k" 后面的数字代表问题允许的最大车辆数。这意味着至少需要k辆车辆来完成所有的配送任务。 这些数据集通常包含每个节点的位置信息(如坐标),以及每个节点的需求量(即货物量)。通过这些数据,我们可以构建出问题的实例,然后运用不同的算法,如贪心算法、遗传算法、模拟退火算法或者现代的深度学习方法,来寻找最优解。 在解决CVRP时,常常会用到Christofides算法,这是一种混合整数线性规划(MILP)的近似算法,它结合了图的最小生成树和最小费用最大流的思想,可以保证找到的解不劣于问题最优解的3/2倍。Eilon算法可能指的是Yehuda Eilon提出的一些早期启发式算法,它们旨在快速找到可行的解决方案,尽管可能不是全局最优解。 在实际应用中,CVRP问题广泛存在于物流配送、城市交通规划、垃圾收集等领域。通过对Christofides&Eilon Set-E-1969数据集的研究,我们可以更好地理解CVRP的复杂性,检验各种算法的性能,并进一步优化物流系统的效率。这个数据集不仅对于学术研究有价值,也是优化实践中不可或缺的工具。
2024-08-20 10:34:05 5KB 车辆路径问题 CVRP
1
ChatGPT是一种基于自然语言处理和深度学习技术的聊天机器人,它可以模拟人类的语言行为,与用户进行自然、流畅、富有逻辑的对话。ChatGPT的优点在于它可以快速地进行训练和部署,适用于各种不同的应用场景,如在线客服、智能助手、教育领域等。以下是ChatGPT的一些特点和优势: 基于GPT技术:ChatGPT是基于著名的语言模型GPT(Generative Pre-training Transformer)技术开发的,GPT技术可以让ChatGPT具有更强的语言理解和生成能力,从而实现更加自然、流畅的对话效果。 可扩展性强:ChatGPT可以通过增加训练数据和改变模型结构来实现更好的性能,同时也支持多语言的处理,可以适应不同语言和文化背景的用户需求。 可定制化:ChatGPT可以基于不同的应用场景和需求进行定制,通过人工干预和调参来提高模型的准确性和效率,从而实现更好的用户体验。 智能化:ChatGPT可以通过学习用户的行为和偏好来优化对话,从而实现更加智能化的对话效果,满足用户的个性化需求。
1
### 智能移动机器人路径规划及仿真 #### 引言 随着科技的进步,智能移动机器人的研究已经从理论探索走向实际应用阶段。特别是在自主导航、动态避障以及避障时间方面,移动机器人面临着越来越高的要求。对于在复杂且动态变化的环境中运行的地面智能机器人而言,路径规划成为其核心技术之一。因此,研究高效、可靠的路径规划方法具有重要意义。 #### 国内外研究现状 本论文首先对国内外机器人路径规划的研究现状进行了全面回顾,包括各种路径规划方法的特点、优缺点及其应用场景。通过比较分析,可以发现不同方法在解决特定问题时的表现差异,为后续研究提供了参考依据。 #### 移动机器人的建模与路径规划方法 在介绍了国内外研究现状之后,论文详细阐述了几种传统移动机器人建模与路径规划的方法,例如: 1. **图搜索算法**:如A*算法,它是一种启发式搜索算法,在搜索过程中考虑了节点到达目标的估计成本,能够找到最短路径。 2. **潜在场法**:利用吸引场和排斥场来引导机器人运动,实现避障的同时达到目标位置。 3. **遗传算法**:模拟生物进化过程,通过选择、交叉、变异等操作,寻找最优解或近似最优解。 4. **神经网络方法**:利用人工神经网络的学习能力,训练出能够处理路径规划任务的模型。 这些方法各有优势,但也存在局限性,比如局部最优问题、计算效率等。 #### 主要算法介绍 本论文提出了三种创新性的路径规划算法,具体如下: 1. **基于虚拟行走模块和旋转矢量算法的路径规划**:这种方法结合了虚拟行走模块的概念与旋转矢量的思想,能够根据当前状态自动调整机器人的运动方向,从而避开障碍物并到达目标位置。该算法特别适用于需要快速响应变化环境的场景。 - **虚拟行走模块**:将机器人的移动行为抽象成一系列虚拟动作单元,通过调整这些单元的参数(如速度、方向等)来规划路径。 - **旋转矢量算法**:利用矢量运算确定机器人应朝哪个方向移动以避开障碍物,同时确保向目标点靠近。 2. **基于视觉的道路跟踪算法**:通过视觉传感器获取环境信息,识别道路特征,并据此调整机器人的行驶轨迹。这种方法能够有效应对开放环境下的路径跟踪问题,尤其适合于城市道路或野外环境下行驶的机器人。 3. **基于圆弧轨迹的四轮自主车行走模式**:该算法设计了一种基于圆弧轨迹的路径规划方案,适用于四轮驱动的自主车辆。通过精确控制每个车轮的速度和转向角度,使车辆能够沿着预设的圆弧路径行驶,有效避免碰撞并提高行驶效率。 #### 仿真验证 为了验证上述算法的有效性和可行性,作者使用了VC++和OpenGL开发了仿真软件。该仿真软件具备友好的用户界面和丰富的功能,能够模拟不同的环境条件,测试机器人在各种情况下的表现。通过对仿真结果的分析,可以看出这三种算法均能在不同程度上满足路径规划的需求,特别是针对复杂环境下的避障和导航问题。 #### 结论 本论文不仅总结了现有路径规划方法的特点和局限性,还提出了一系列创新性的算法,通过仿真验证了这些算法的有效性。这些研究成果为进一步优化智能移动机器人的路径规划性能提供了有价值的参考。随着技术的不断进步,相信未来智能移动机器人将在更多领域发挥重要作用。
2024-08-11 14:53:28 2.91MB 智能移动 机器人 路径规划
1
在Matlab环境下的基于深度强化学习(DQN)的路径规划
2024-08-05 10:28:00 99KB MATLAB 深度强化学习 路径规划
1
svg到cnc 编译 SVG 形状并将 CNC 软件转换为基本路径。 笔触和填充的每种组合都成为一个路径元素。 这样可以更轻松地将它们附加到CAM软件(如Cricut Designer)中,然后为每个图层设置工具。 Demo,带SVG文件输入: : 特征 将所有形状转换为路径 将所有嵌套转换烘焙到路径中 删除分组 将所有具有相同笔画/笔画宽度/填充的路径合并为一个路径 为什么 Cricut 的软件因元素计数、组和变换的某些不确定组合而窒息。 我注意到的问题: 大约 100 组元素:“附加”操作使应用程序冻结 有许多剪切和绘制元素:无法在导入时保留这些元素(?),因此选择每个元素来设置钢笔颜色/工具很痛苦 `transform="translate(-10, 0)"` 切换 x 和 y,向上移动元素而不是向左移动 :face_without_mouth: translate`的`一些组合和`scale`得到... .
2024-07-10 17:43:45 44KB JavaScript
1
【标题】"2017年研究生数学建模E题程序"揭示了当年数学建模竞赛中的一个实际问题,该问题涉及到了运用编程技术解决数学模型。数学建模是将现实问题转化为数学模型,通过计算和分析来找到最优解的过程。在本案例中,参赛者可能需要对某个具体情境下的问题进行分析,比如资源分配、网络优化或决策制定等。 【描述】中提到的"线性规划"是一种求解最优化问题的方法,它处理的是目标函数与约束条件都是线性的系统。线性规划广泛应用于生产计划、运输问题、资源配置等领域,通过寻找可行解中的最大值或最小值来确定最优策略。"证书规划"可能是指灵敏度分析或对偶理论,用于检验模型的稳定性并了解参数变化对解的影响。而"弗洛伊德算法"是解决图论中的"最短路径"问题的一种经典方法,适用于查找图中所有顶点之间的最短路径,尤其适用于稠密图。 文件名列表中的"data.m"可能包含了问题的数据输入,如变量、参数和初始条件。"Problem_1.m"到"Problem_4.m"分别对应于数学建模竞赛中的前四问,每问可能是一个独立的子问题,通过编写不同的MATLAB代码来解决。"floyd.m"则直接指向了弗洛伊德算法的实现,用于计算图中各节点间的最短路径。 在数学建模过程中,MATLAB作为一种强大的数值计算和编程环境,常被用来构建模型、求解问题和可视化结果。每个参赛团队会根据题目要求,利用这些工具和方法,结合实际背景,设计出合适的算法,最终形成完整的问题解决方案。 学习这部分内容有助于提升对数学建模的理解,掌握线性规划的求解技巧,以及如何应用图论算法解决实际问题。对于参加数学建模比赛的学生,不仅需要扎实的数学基础,还需要具备一定的编程能力,特别是用MATLAB进行数值计算和优化的能力。此外,了解如何将复杂问题转化为数学模型,并通过编程求解,也是现代科学研究和工程实践中的重要技能。
2024-07-09 10:07:07 6KB 数学建模 最短路径
1