介绍 这是一个使用keras和mnist数据集的简单图像识别模型。 使用img_saver.py,您可以通过将png文件命名为其预测标签来生成图像。 因此,此模块在我的Express Express节点中使用。 该应用程序可以允许您键入一些随机整数,并在HTML上显示相应的图像。 Python版本 3.6 图书馆 主要依靠keras,numpy,matplotlib 权重和架构 全部保存在model.h5(顺序架构)和model.json(权重)中
2022-12-07 23:26:28 4.3MB Python
1
稀疏R-CNN:具有可学习建议的端到端对象检测 纸(CVPR 2021) 更新 (02/03/2021)通过使用更强大的主干模型报告了更高的性能。 (23/02/2021)通过使用更强大的预训练模型报告了更高的性能。 (02/12/2020)型号和日志(R101_100pro_3x和R101_300pro_3x)可用。 (26/11/2020)提供了模型和日志(R50_100pro_3x和R50_300pro_3x)。 (26/11/2020)通过将辍学率设置为0.0,报告了稀疏R-CNN的更高性能。 楷模 方法 inf_time train_time 盒式AP 程式库 22 FPS 24小时 45.0 22 FPS 28小时 46.5 13 FPS 50小时 45.7 方法 inf_time train_time 盒式AP 下载 23 FPS 19小时
2022-12-07 20:30:46 861KB Python
1
重要知识点经过批注的AlexNet论文原版
2022-12-06 17:26:35 1.39MB cnn cv
1
图像分类张量流 用于图像分类的cnn模型
2022-12-05 14:40:07 3.42MB Python
1
将GRU与CNN的输出整合输出
2022-12-03 16:27:17 2KB 故障诊断
1
单变量时间序列预测开发深度学习模型_python源码+数据+超详细注释 内容: 多层感知器模型 卷积神经网络模型_CNN 递归神经网络模型_LSTM 递归神经网络模型_CNN+LSTM 递归神经网络模型_ConvLSTM2D 本文使用了5种不同的网络模型,实现了一元序列的自回归 1.MLP:多层感知机 2.CNN:卷积 3.LSTM:长短周期 4.CNN+LSTM卷积+长短周期 5.ConvLSTM2D卷积+长短周期 并且分别比较了5中模型的预测效果,CNN模型相对来时是最好的。 深度学习在一元时间序列预测中表现并不佳
2022-12-02 19:28:16 28KB MLP CNN LSTM ConvLSTM2D
使用CNN的音乐流派分类
2022-12-02 16:26:14 2.45MB Python
1
基于MLP_CNN_LSTM_CNN-LSTM时间序列预测_编码器-解码器LSTM多步预测_Keras_python源码_代码附有详细注释 3.用于时间序列预测的MLP 4.用于时间序列预测的CNN 5.用于时间序列预测的LSTM 6.编码器-解码器LSTM多步预测 7.用于时间序列预测的CNN-LSTM
2022-12-02 14:29:46 4KB MLP CNN LSTM CNN-LSTM
基于CNN(卷积神经网络)的时间序列预测python源码+超详细注释 以CNN网络模型为示例,介绍了各种不同数据类型的网络结构 重点包含: 1.如何构造输入输出数据的形状 2.如何配置合适的网络参数来接受这些输入输出训练数据 本教程的目的是提供不同类型的时间序列预测模型的独立示例,作为模板,您可以针对特定的时间序列预测问题进行复制和调整
2022-12-02 14:29:40 18KB CNN 时间序列预测
基于LSTM(长短期记忆人工神经网络)_CNN+LSTM_堆叠式LSTM的时间序列预测python源码+超详细注释 以LSTM网络模型为示例,介绍了各种不同数据类型的网络结构 重点包含: 1.如何构造输入输出数据的形状 2.如何配置合适的网络参数来接受这些输入输出训练数据 本教程的目的是提供不同类型的时间序列预测模型的独立示例,作为模板,您可以针对特定的时间序列预测问题进行复制和调整