[{"title":"( 15 个子文件 18KB ) 基于CNN(卷积神经网络)的时间序列预测python源码+超详细注释.zip","children":[{"title":"基于CNN(卷积神经网络)的时间序列预测python源码+超详细注释","children":[{"title":"04.(多步+多变量输入)_(单步+单变量输出)_CNN模型.py <span style='color:#111;'> 2.28KB </span>","children":null,"spread":false},{"title":"12.(多步+多变量输入)_(多步+单变量输出)_CNN模型.py <span style='color:#111;'> 2.53KB </span>","children":null,"spread":false},{"title":"03.(多步+多变量输入)_(单步+单变量输出)_监督学习数据.py <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"02.(多步+单变量输入)_(单步+单变量输出)_CNN模型.py <span style='color:#111;'> 1.80KB </span>","children":null,"spread":false},{"title":"13.(多步+多变量输入)_(多步+多变量输出)_监督学习数据.py <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"01.(多步+单变量输入)_(单步+单变量输出)_监督学习数据.py <span style='color:#111;'> 745B </span>","children":null,"spread":false},{"title":"06.(多步+多变量输入)_(单步+多变量输出)_CNN模型.py <span style='color:#111;'> 2.24KB </span>","children":null,"spread":false},{"title":"项目说明.txt <span style='color:#111;'> 395B </span>","children":null,"spread":false},{"title":"14.(多步+多变量输入)_(多步+多变量输出)_CNN模型.py <span style='color:#111;'> 2.65KB </span>","children":null,"spread":false},{"title":"09.(多步+单变量输入)_(多步+单变量输出)_监督学习数据.py <span style='color:#111;'> 837B </span>","children":null,"spread":false},{"title":"11.(多步+多变量输入)_(多步+单变量输出)_监督学习数据.py <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"07.多路输入_(多步+多变量输入)_(单步+单变量输出)_CNN模型.py <span style='color:#111;'> 3.81KB </span>","children":null,"spread":false},{"title":"05.(多步+多变量输入)_(单步+多变量输出)_监督学习数据.py <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"10.(多步+单变量输入)_(多步+单变量输出)_CNN模型.py <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false},{"title":"08.多路输出_(多步+多变量输入)_(单步+多变量输出)_CNN模型.py <span style='color:#111;'> 2.94KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]