内容概要:本文详细介绍了两种用于多特征用电负荷预测的深度学习组合模型——CNN-LSTM-Attention和CNN-GRU-Attention。通过对30分钟粒度的真实电力数据进行处理,包括数据预处理、滑动窗口生成、归一化等步骤,作者构建并优化了这两种模型。模型结构中,CNN用于提取局部特征,LSTM/GRU处理时序依赖,Attention机制赋予关键时间点更高的权重。实验结果显示,CNN-GRU-Attention模型在RMSE和MAPE指标上略优于CNN-LSTM-Attention,但在电价波动剧烈时段,LSTM版本更为稳定。此外,文中还讨论了模型部署时遇到的问题及其解决方案,如累积误差增长过快、显存占用高等。 适合人群:从事电力系统数据分析、机器学习建模的研究人员和技术人员,尤其是对深度学习应用于时序预测感兴趣的读者。 使用场景及目标:适用于需要精确预测电力负荷的场景,如电网调度、能源管理和智能电网建设。目标是提高预测精度,降低预测误差,从而优化电力资源配置。 其他说明:文中提供了详细的代码片段和模型架构图,帮助读者更好地理解和复现实验。同时,强调了数据预处理和特征选择的重要性,并分享了一些实用的经验技巧,如特征归一化、Attention层位置的选择等。
2025-05-29 18:16:10 675KB
1
内容概要:本文介绍了基于卷积长短期记忆神经网络(CNN-LSTM)的时间序列预测模型的设计与实现。该模型融合了CNN强大的特征提取能力和LSTM对于时间序列的预测优势,适用于处理具有时序特性的多维数据。项目通过多种性能评估指标以及用户友好的GUI界面来增强其实用性和准确性。 适用人群:对时间序列预测感兴趣的初学者及有一定深度学习基础的研发人员。 使用场景及目标:主要应用于金融市场预测、销量预测、气象数据分析和生产环境监控等领域,帮助用户理解时间序列的特性,提高模型预测精度。 其他说明:项目实现了完整的模型构建、训练与评估流程,同时也强调了数据预处理的重要性,为后续的研究提供了参考。此外,还提出了几个可能的改进方向,比如引入注意力机制等高级技术以增加模型复杂性和适应性。
2025-05-17 14:12:44 37KB 时间序列预测 深度学习 MATLAB GUI设计
1
简述 模型的应用数据集为PHM2012轴承数据集,使用原始振动信号作为模型的输入,输出为0~1的轴承剩余使用寿命。每一个预测模型包括:数据预处理、预测模型、训练函数、主程序以及结果输出等五个.py文件。只需更改数据读取路径即可运行。【PS: 也可以改为XJTU-SY轴承退化数据集】 具体使用流程 1.将所有的程序放在同一个文件夹下,修改训练轴承,运行main.py文件,即可完成模型的训练。 2.训练完成后,运行result_out.py文件,即可输出预测模型对测试轴承的预测结果。
2025-05-07 11:25:43 701.91MB
1
基于GADF-CNN-LSTM模型的齿轮箱故障诊断研究:从原始振动信号到多级分类与样本分布可视化,基于GADF-CNN-LSTM模型的齿轮箱故障诊断系统:东南大学数据集的Matlab实现与可视化分析,基于GADF-CNN-LSTM对齿轮箱的故障诊断 matlab代码 数据采用的是东南大学齿轮箱数据 该模型进行故障诊断的具体步骤如下: 1)通过GADF将原始的振动信号转化为时频图; 2)通过CNN-LSTM完成多级分类任务; 3)利用T-SNE实现样本分布可视化。 ,基于GADF-CNN-LSTM的齿轮箱故障诊断; 东南大学齿轮箱数据; 原始振动信号转化; 多级分类任务; T-SNE样本分布可视化。,基于GADF-CNN-LSTM的齿轮箱故障诊断方法及其Matlab实现
2025-04-29 09:58:45 1.44MB sass
1
基于深度学习混合模型的时序预测系统:CNN-LSTM-Attention回归模型在MATLAB环境下的实现与应用,基于多变量输入的CNN-LSTM-Attention混合模型的数据回归与预测系统,CNN-LSTM-Attention回归,基于卷积神经网络(CNN)-长短期记忆神经网络(LSTM)结合注意力机制(Attention)的数据回归预测,多变量输入单输入,可以更为时序预测,多变量 单变量都有 LSTM可根据需要更为BILSTM,GRU 程序已经调试好,无需更改代码替数据集即可运行数据格式为excel 、运行环境要求MATLAB版本为2020b及其以上 、评价指标包括:R2、MAE、MSE、RMSE等,图很多,符合您的需要 、代码中文注释清晰,质量极高 、测试数据集,可以直接运行源程序。 替你的数据即可用适合新手小白 、 注:保证源程序运行, ,核心关键词:CNN-LSTM-Attention; 回归预测; 多变量输入单输入; 时序预测; BILSTM; GRU; 程序调试; MATLAB 2020b以上; 评价指标(R2、MAE、MSE、RMSE); 代码中文注释清晰; 测试数
2025-04-24 22:28:38 3.4MB sass
1
该资源使用CNN对语音特征进行特征提取,构建用于孤立词语言识别的声学模型。 该资源使用CNN对语音特征进行特征提取,构建用于孤立词语言识别的声学模型。 该资源使用CNN对语音特征进行特征提取,构建用于孤立词语言识别的声学模型。 该资源使用CNN对语音特征进行特征提取,构建用于孤立词语言识别的声学模型。 该资源使用CNN对语音特征进行特征提取,构建用于孤立词语言识别的声学模型。 该资源使用CNN对语音特征进行特征提取,构建用于孤立词语言识别的声学模型。 该资源使用CNN对语音特征进行特征提取,构建用于孤立词语言识别的声学模型。 该资源使用CNN对语音特征进行特征提取,构建用于孤立词语言识别的声学模型。 该资源使用CNN对语音特征进行特征提取,构建用于孤立词语言识别的声学模型。 该资源使用CNN对语音特征进行特征提取,构建用于孤立词语言识别的声学模型。 该资源使用CNN对语音特征进行特征提取,构建用于孤立词语言识别的声学模型。
2025-04-23 18:55:52 110.56MB 语音识别 lstm
1
主要内容:本文详细介绍了在MATLAB环境中通过鲸鱼优化算法(WOA)来优化卷积长短期记忆网络(CNN-LSTM)以实现高效的数据分类与预测的方法。项目不仅提供了理论概述和设计思路,还包含了完整代码及合成数据样本。涵盖了从基础知识到模型优化的设计流程。 适合人群:对于深度学习及机器学习感兴趣的研究员和工程师。 使用场景及目标:适用于各种类型数据的分类及预处理,在需要进行复杂数据集处理的情况下能提供更好的预测效果。 其他说明:文中给出了详细的设计指导和具体的执行脚本,方便读者理解和实践。同时,项目允许在特定应用场景下定制和调参,增强了方法的实用性。
2024-11-18 17:13:49 37KB 鲸鱼算法 MATLAB环境
1
基于卷积-长短期记忆网络加注意力机制(CNN-LSTM-Attention)的时间序列预测程序,预测精度很高。 可用于做风电功率预测,电力负荷预测等等 标记注释清楚,可直接换数据运行。 代码实现训练与测试精度分析。 这段程序主要是一个基于CNN-LSTM-Attention神经网络的预测模型。下面我将逐步解释程序的功能和运行过程。 1. 导入所需的库: - matplotlib.pyplot:用于绘图 - pandas.DataFrame和pandas.concat:用于数据处理 - sklearn.preprocessing.MinMaxScaler:用于数据归一化 - sklearn.metrics.mean_squared_error和sklearn.metrics.r2_score:用于评估模型性能 - keras:用于构建神经网络模型 - numpy:用于数值计算 - math.sqrt:用于计算平方根 - attention:自定义的注意力机制模块 2. 定义一个函数mae_value(y_true, y_pred)用于计
2024-10-31 10:13:17 288KB 网络 网络 lstm
1
CNN-LSTM-Attention分类,基于卷积神经网络-长短期记忆网络结合注意力机制(CNN-LSTM-Attention)分类预测 MATLAB语言(要求2020版本以上) 中文注释清楚 非常适合科研小白,替数据集就可以直接使用 多特征输入单输出的二分类及多分类模型。 预测结果图像:迭代优化图,混淆矩阵图等图如下所示
2024-10-10 09:56:10 191KB
1
基于CNN-LSTM模型的网络入侵检测方法,使用的是UNSW-NB15数据集,代码包含实验预处理,混淆矩阵输出,使用分成K折交叉验证,实验采用多分类,取得良好的效果。 Loss: 0.05813377723097801 Accuracy: 0.9769517183303833 Precision: 0.9889464676380157 Recall: 0.9685648381710052
2024-09-20 20:56:16 397KB lstm jupyter
1