自下而上的注意力 该存储库包含基于Caffe的项目的PyTorch重新实现。 我们使用作为后端来提供完整的功能,包括培训,测试和特征提取。 此外,我们从原始存储库中迁移了经过预训练的基于Caffe的模型,该模型可以提取与原始模型相同的视觉特征(偏差 = 3.6 > = 1.4 > = 9.2和cuDNN 顶尖 侦探2 射线 OpenCV Pycocotools 请注意,Detectron2需要上述大多数要求。 安装 克隆包含Detectron2所需版本(v0.2.1)的项目 # clone the repository inclduing Detectron2(@be792b9) $ git clone --recursive https:
1
基于Keras的GAN网络代码,里面有各种GAN网络的代码,请下载
2021-09-28 14:05:32 1.14MB attention keras kerasgan GaN
针对长短时记忆网络(LSTM)不能有效地提取动作前后之间相互关联的信息导致行为识别率偏低的问题,提出了一种基于Bi-LSTM-Attention模型的人体行为识别算法。该算法首先从每个视频中提取20帧图像,通过Inceptionv3模型提取图像中的深层特征,然后构建向前和向后的Bi-LSTM神经网络学习特征向量中的时序信息,接着利用注意力机制自适应地感知对识别结果有较大影响的网络权重,使模型能够根据行为的前后关系实现更精确的识别,最后通过一层全连接层连接Softmax分类器并对视频进行分类。通过Action Youtobe和KTH人体行为数据集与现有的方法进行比较,实验结果表明,本文算法有效地提高了行为识别率。
2021-09-24 02:23:54 4.73MB 机器视觉 行为识别 注意力机 Inception
1
1.由来 在Transformer之前,做翻译的时候,一般用基于RNN的Encoder-Decoder模型。从X翻译到Y。 但是这种方式是基于RNN模型,存在两个问题。 一是RNN存在梯度消失的问题。(LSTM/GRU只是缓解这个问题) 二是RNN 有时间上的方向性,不能用于并行操作。Transformer 摆脱了RNN这种问题。 2.Transformer 的整体框架 输入的x1,x2x_{1},x_{2}x1​,x2​,共同经过Self-attention机制后,在Self-attention中实现了信息的交互,分别得到了z1,z2z_{1},z_{2}z1​,z2​,将z1,z2
2021-09-23 15:51:14 2.09MB attention elf fo
1
语言:English (UK) 人工智能驱动的设计分析 直接在您所在的位置生成关注热点图,并发现优化网站的方法! 基于AI的设计分析功能使您可以通过用户的眼光看网站。 了解用户如何参与设计,改善用户体验,与竞争对手进行衡量并做出以数据为依据的决策。 Attention Insight基于深度学习技术,并接受了30800次眼动追踪研究数据的培训。 与眼动追踪研究相比,注意力热图的准确性为90%。 由麻省理工学院证明。 *了解,哪个对象最吸引眼球而无需收集数据。 *在数分钟内实施A / B测试*与您的竞争对手进行比较*改善视觉吸引力并优化内容可视性AI正在为您服务。 在https://www.attentioninsight.com上了解有关Attention Insight的更多信息
2021-09-22 16:51:53 722KB 扩展程序
1
Keras注意机制 在Keras中为以下层实现了简单的关注机制: 密集(注意2D块) LSTM,GRU(注意3D块) 示例:注意块 致密层 inputs = Input(shape=(input_dims,)) attention_probs = Dense(input_dims, activation='softmax', name='attention_probs')(inputs) attention_mul = merge([inputs, attention_probs], output_shape=input_dims, name='attention_mul', mode='mul') 让我们考虑这个“ Hello World”示例: 32个值的向量v作为模型的输入(简单前馈神经网络)。 v [1] =目标。 目标是二进制(0或1)。 向量v的所有其他值(
2021-09-20 12:23:20 1.14MB Python
1
Toprovidemoreaccurate,diverse,andexplainablerecommendation, it is compulsory to go beyond modeling user-item interactions andtakesideinformationintoaccount.Traditionalmethodslike factorizationmachine(FM)castitasasupervisedlearningproblem, whichassumeseachinteractionasanindependentinstancewith side information encoded. Due to the overlook of the relations amonginstancesoritems(e.g., thedirectorofamovieisalsoan actorofanothermovie),thesemethodsareinsufficienttodistillthe collaborativesignalfromthecollectivebehaviorsofusers.
2021-09-16 17:04:34 1.36MB KG
1
TCN关注 带有关注层的时间卷积网络 模型的概念主要类似于 。 但是在此模型中,注意力层位于卷积层的每个顶层。 并且注意大小与SNAIL不同。 结果 数据集:无需预处理的 关注:0.82 无注意:0.81 我对结果的看法 agnews上的大多数简单模型都显示出0.81的精度。 (在 ,“ 上进行了测试,并使用了基于单词的嵌入) 因此,基于字符的模型具有0.82的准确性似乎是值得的。
2021-09-14 19:21:06 16KB pytorch tcn tcn-attention Python
1
显著性检测组会汇报ppt,主要讲解了将金字塔特征注意力网络用于显著性检测的方法,网络结构,实验等内容。
1
来自Self-Attention ConvLSTM for Spatiotemporal Prediction文章的Self-Attention Module的实现。使用python3语言,tensorflow2.0框架编写。
2021-09-10 09:10:39 1KB attention lstm 算法 序列预测