上传者: 38550834
|
上传时间: 2021-09-24 02:23:54
|
文件大小: 4.73MB
|
文件类型: PDF
针对长短时记忆网络(LSTM)不能有效地提取动作前后之间相互关联的信息导致行为识别率偏低的问题,提出了一种基于Bi-LSTM-Attention模型的人体行为识别算法。该算法首先从每个视频中提取20帧图像,通过Inceptionv3模型提取图像中的深层特征,然后构建向前和向后的Bi-LSTM神经网络学习特征向量中的时序信息,接着利用注意力机制自适应地感知对识别结果有较大影响的网络权重,使模型能够根据行为的前后关系实现更精确的识别,最后通过一层全连接层连接Softmax分类器并对视频进行分类。通过Action Youtobe和KTH人体行为数据集与现有的方法进行比较,实验结果表明,本文算法有效地提高了行为识别率。