传统的细菌觅食优化算法仅针对单目标优化问题寻优,为进一步发掘细菌群体智能在多目标优化问题中的寻优优势,提出了改进的多目标细菌觅食优化算法。在个体间互不支配时给出归一化的择优策略;引入差分思想完成复制操作,提高种群的多样性;采用栅格划分法进行迁徙操作,提高解集的分散性;同时使用外部集存放当前找到的非支配解,并不断对外部集进行优化。通过对多个标准函数进行测试并与其他几种算法的对比结果表明,所提出的多目标细菌觅食优化算法在解的收敛性和分散性指标上都有一定提升,能够有效解决多目标优化问题。
1
文件中具体描述哪些算法适合解决单目标优化问题、多目标优化问题以及高维多目标优化问题等等。哪些基准测试函数适用于单目标、多目标、高维多目标问题等等,以及介绍了PlatEMO3.0的基本操作和使用方法。
1
进化多目标优化主要研究如何利用进化计算方法求解多目标优化问题,已经成为进化计算领域的研 究热点之一.在简要总结2003 年以前的主要算法后,着重对进化多目标优化的最新进展进行了详细讨论.归纳出 当前多目标优化的研究趋势,一方面,粒子群优化、人工免疫系统、分布估计算法等越来越多的进化范例被引入多目标优化领域,一些新颖的受自然系统启发的多目标优化算法相继提出;另一方面,为了更有效的求解高维多 目标优化问题,一些区别于传统Pareto 占优的新型占优机制相继涌现;同时,对多目标优化问题本身性质的研究 也在逐步深入.对公认的代表性算法进行了实验对比.最后,对进化多目标优化的进一步发展提出了自己的看法. 关键词: 多目标优化;进化算法;Pareto 占优;粒子群优化;人工免疫系统;分布估计算法
2021-12-24 16:30:18 631KB 多目标 优化 算法
1
针对生产过程中生产作业的优化调度问题,以生产质量、效率和成本阈值为约束条件,基于集对分析建立了的生产质量—效率—成本控制的生产作业多目标优化模型;利用快速非支配排序遗传算法(NSGA-Ⅱ)求解优化模型,得到相对确定条件下质量—效率—成本控制的Pareto最优解集。决策者依据实际生产过程需要,为各项生产作业从Pareto最优解集中筛选最合理的调度方案。最后,通过算例仿真验证了结合集对分析与NSGA-Ⅱ的方法解决生产作业多目标优化问题的准确性、有效性和实用性。
1
对于基于pareto的多么目标优化问题。引入了当前研究多目标优化的新方法—基于遗传算法求解问题的求解,讨论了该方法要解决的关键问题—多样性保持及解决策略,并给出了一个求解解集的新算法,算法简单、高效、鲁棒性强。
2021-12-22 19:55:53 159KB pareto 小生境技术 多目标
1
针对传统多目标优化算法在其领域存在的多个子目标不能同时取优的问题,提出了一种基于改进的非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅱ,NSGA-Ⅱ)多目标优化方法。以多目标优化遗传算法为基础,多输入多输出的反向传播(back-propagation,BP)神经网络为适应度函数评价体系,保证算法快速收敛并搜索到全局最优解集。该算法在建模前对实验数据进行主成分分析,降低了运算时间和算法难度,通过在遗传进化过程中引进正态分布交叉算子(normal distribution crossover,NDX)和改进的自适应调整变异算子,实现了多个目标同时取优,保证Pareto最优解集快速、准确地获取。仿真实验使用UCI数据集,通过与其他常用的多目标优化算法对比,验证了改进的NSGA-Ⅱ算法精确度更高、收敛速度更快、稳定性更强。
1