Modeling Continuous-time Event Data with Neural Temporal Point Processes 事件数据是机器学习许多高影响力应用的核心。电子健康记录中的医院访问,地震学中的地震目录,以及神经科学中的高峰列车——所有这些都可以用连续时间中可变长度的事件序列来表示。时间点流程(TPPs)为此类数据建模提供了一个自然的框架。然而,传统的TPP模型缺乏捕捉现实事件数据中呈现的复杂模式的能力。神经TPP旨在通过将神经网络与点过程文献中的基本思想相结合来解决这一限制。本论文的两个主要主题是(1) 设计灵活、可处理和高效的神经TPP模型,(2)它们在现实问题中的应用。我们的第一个贡献是TPP和神经密度估计领域之间的联系。这使得我们能够开发第一个神经TPP模型,其中的可能性计算、采样和预测都可以以封闭的形式有效地完成。接下来,我们提出了TriTPP——一种新的表达性TPP模型,与现有方法不同,该模型中所有操作都可以并行完成。快速平行采样为TPP模式开启了新的应用。我们通过推导连续时间离散状态系统的变分推断方案来证明这一点。最后,我们将拟合优度测试方
2022-07-16 21:05:04 4.19MB 深度学习
1
这是Jake Bouvrie在2006年写的关于CNN的训练原理,虽然文献老了点,不过对理解经典CNN的训练过程还是很有帮助的。该作者是剑桥的研究认知科学的。【英文版】
2022-07-14 17:01:27 203KB CNN
1
当前,深度学习和人工智能的发展和应用给人们留下了深刻的印象。神经网络是深度学习和人工智能的关键元素,然而,真正了解神经网络工作机制的人少之又少。本书用轻松的笔触,一步一步揭示了神经网络的数学思想,并介绍如何使用Python编程语言开发神经网络。 本书将带领您进行一场妙趣横生却又有条不紊的旅行——从一个非常简单的想法开始,逐步理解神经网络的工作机制。您无需任何超出中学范围的数学知识,并且本书还给出易于理解的微积分简介。本书的目标是让尽可能多的普通读者理解神经网络。读者将学习使用Python开发自己的神经网络,训练它识别手写数字,甚至可以与专业的神经网络相媲美。 本书适合想要了解深度学习、人工智能和神经网络的读者阅读,尤其适合想要通过Python编程进行神经网络开发的读者参考。 这是一本精心编写、给完全初学者的图书。它带领读者构建一个真正、有效的神经网络,而不需要读者具备任何复杂的数学知识和深度学习的理论。 ——M Ludvig 强烈推荐本书。这本书使得人工神经网络的概念非常清晰而容易理解。读者应该尝试重复本书中给出的示例,以便让本书发挥大的作用。我就是这么做的,效果不错! ——美亚的一位读者 如果你对人工智能或神经网络感兴趣的话,这应该是你的第1本入门书。本书对主题的介绍非常清晰,几乎涉及理解神经网络所需的所有知识,包括微积分、统计、矩阵、编程等等。 ——Niyazi Kemer 这是一本优秀的入门图书,它有几个显著特点。它细致而透彻地介绍了神经网络。它用非常精简、实用的方式介绍了数学知识,特别是矩阵乘法和一些简单的微积分,使得读者能够很容易接受一次数学训练。它使用IPython作为计算平台,引导读者使用Python编写神经网络。 ——Daniel Oderbolz
2022-07-12 22:35:08 7.12MB 神经网络 深度学习 python
1
Apache MXNet Gluon中的LSTNet实现 该存储库包含本文的实现: ://arxiv.org/abs/1703.07015,基于该存储库中作者的原始PyTorch实现: : 请参考该论文以获取有关网络体系结构的背景知识。 运行脚本 要获取命令行参数列表: python train.py-帮助
1
TensorFlow自组织图 TensorFlow 1.5和Python 3.6的Kohonen自组织映射1的实现。 提供了一个Tensorflow V2版本,该版本位于tfv2分支中。 (感谢Dragan!)这最初是基于代码,但进行了一些关键的修改: 使用TensorFlow广播语义而不是tf.pack和for循环。 输入数据应该来自Tensor而不是tf.placeholder ,从而可以与更快,更复杂的输入数据管道一起使用。 培训使用批处理算法而不是在线算法,如果您具有GPU RAM,则可以大大提高速度。 另外,因此,我添加了... 多GPU支持(对于具有多个GPU的单机,它没有多节点培训)。 Tensorboard可视化的一些摘要操作 example.py通过在3个群集玩具数据集上训练SOM来包含其用法的简单示例。 产生的u-matrix应该看起来像这样: 请注意,该示
1
captcha_cracker 简介 这是一个基于 编写的卷积神经网络模型,简单实现的验证码识别功能。 是一款 社区中流行的验证码生成库, 项目模型的训练集以及在线测试所用到的验证码均采用该库生成。 运行环境 Ubuntu16.04 python3.5.2 virtualenv Tensorflow Backend 实现原理 用 Captcha 生成2组每组2000个4位验证码图片(图片尺寸:36×120),并等分成4份(单张图片尺寸:36×30),将单个字符的图片分类保存在 images 目录中作为训练集(每组8000张图片)。 生成2组每组500个4位验证码图片(图片尺寸:36×120),并等分成4份(单张图片尺寸:36×30),将单个字符的图片分类保存在 images 目录中作为测试集(每组2000张图片)。 运行 pack_data.py 将图片转为 RGB 矩阵并用cPic
2022-06-24 11:08:30 5.23MB neural-network tensorflow cnn-keras Python
1
对抗性鲁棒性工具箱(ART)v1.5 对抗性鲁棒性工具箱(ART)是用于机器学习安全性的Python库。 ART提供的工具使开发人员和研究人员可以针对逃避,中毒,提取和推理的对抗性威胁捍卫和评估机器学习模型和应用程序。 ART支持所有流行的机器学习框架(TensorFlow,Keras,PyTorch,MXNet,scikit-learn,XGBoost,LightGBM,CatBoost,GPy等),所有数据类型(图像,表格,音频,视频等)和机器学习任务(分类,对象检测,语音识别,生成,认证等)。 了解更多 --- ----- -, --- 该图书馆正在不断发展中。 欢迎反馈,错误报告和贡献
2022-06-22 17:30:56 34.94MB python deep-neural-networks attack scikit-learn
1
已淘汰 该项目建于2016年(旧的张量流时代),在新的张量流下,一些设计选择不再有意义。 您可能会在其他地方找到更好的seq2seq教程/实现。 seq2seq_chatbot 张量流中Seq2seq聊天机器人的实现。 特征 带智能加载程序的动态rnn (无填充) 预测中的波束搜索(全局最优快速近似) 解码器的信号指示器(解码器上的部分控制) 技术报告: : : Python 2.7依赖项 张量流1.8 麻木 json 操作说明 运行“ python train.py”,然后等待(在具有cuda 9.0和cudnn 7.0的GTX 1080 Ti上运行5分钟),直到训练完成 运行“ python test.py”以进入与聊天机器人的交互式会话 尝试自己的数据 可以对自己的数据运行它,但是您需要至少生成2个文件,其格式与bbt_data中的文件相同。 text.txt,这是
1
歌声分离RNN 雷茂 芝加哥大学 介绍 这是使用递归神经网络(RNN)开发的歌声分离工具。 它可以将歌手的声音和背景音乐与原始歌曲区分开。 由于分离尚不完善,因此它仍处于开发阶段。 请检查演示的性能。 依存关系 的Python 3.5 脾气暴躁的1.14 TensorFlow 1.8 RarFile 3.0 进度栏2 3.37.1 LibROSA 0.6 Matplotlib 2.1.1 档案文件 . ├── demo ├── download.py ├── evaluate.py ├── figures ├── LICENSE.md ├── main.py ├── model ├── model.py ├── preprocess.py ├── README.md ├── songs ├── statistics ├── train.py └── utils.py 数据
2022-06-22 10:48:33 62.53MB recurrent-neural-networks source-separation Python
1
分析神经时间序列 2021年1月更新:我将清理现有文件,更新为python3,并在有时间的时候完成其余章节。 要求:Python> = 3.6,numpy> = 1.15,scipy> = 1.5,matplotlib> = 3.2,scikit-image> = 0.17 分析神经时间序列(2012)的Python(Jupyter笔记本)实现。 迈克·科恩(Mike Cohen)撰写的《分析神经时间序列》是一本很棒的书,专为处理连续神经数据的神经科学家撰写。 尽管看起来这本书主要是为脑电图分析而写的,但我发现书中的主题很容易翻译成需要连续数据信号处理的任何领域。 每章介绍一种新技术,重点放在概念而不是严格的数学上,甚至在每章末尾都有摘要,并在本文的“方法”部分中介绍了如何描述分析的技巧。 如果有什么问题,请告诉我。 去做: 第6章清理 第9章清理 第10章清理 第11章清
2022-06-21 22:29:57 17.95MB python timeseries jupyter analysis
1